مطالعه ریزساختارها در کمپلکس گرانیتوئیدی بروجرد (غرب ایران)

داريوش اسماعيلى (او*)، جمال رسولى و محمد محجل "

۱. دانشیار دانشکده زمینشناسی، پردیس علوم، دانشگاه تهران ۲. کارشناسی ارشد پترولوژی، پردیس علوم، دانشکده زمینشناسی، دانشگاه تهران ۳. دانشیار گروه زمینشناسی، دانشکده علوم پایه، دانشگاه تربیت مدرس، تهران

تاریخ دریافت: ۸۷/۱۱/۱ تاریخ پذیرش: ۸۹/٦/۲

> چکیده کمپلکس گرانیتوئیدی بروجرد یکی از کمپلکس های نفوذی بزرگ در پهنه ساختاری سنندج – سیرجان است. واحد سنگشناسی غالب این کمپلکس، گرانودیوریتی است و استوکهای کوچک کوارتزدیوریتی و مونزو گرانیتی نیز آن را همراهی می نمایند. بررسی ریزساختارهای این سنگهای نفوذی، چهار نوع ریزساختار را در آنها نشان داد؛ ۱) ریزساختار ماگمایی که عمدتاً در جنوب غرب کمپلکس و در جنوب شرق تا مرکز کمپلکس گسترش دارد، ۳) ریزساختار حالت جامد دما بالا که بیشتر در شرق و جنوب غرب کمپلکس توسعه یافته و ٤) ریز ساختارهای ساب میلونیتی تا میلونیتی که از مرکز به سمت شمال کمپلکس گسترش دارند. تمرکز شدت دگرشکلیها در شمال و غرب کمپلکس را میتوان به وجود پهنههای برشی و گسلهای موجود در این مناطق نسبت داد. در حالی که ریزساختار ماگمایی در آنها نیز همخوانی دارد.

> > **واژههای کلیدی**: دگرشکلی، ریزساختارها، گرانیتوئید بروجرد، پهنه سنندج – سیرجان

مقدمه

منطقه مورد مطالعه در شرق و جنوب شرق بروجرد در مجموعه سنگهای دگرگونی قرار دارد. کمپلکس گرانیتوئیدی بروجرد بهصورت کشیده، با طول ۲۰ کیلومتر و پهنای ۱۰–۸ کیلومتر در این منطقه رخمنون یافتهاست (شکل ۱). امروزه جهت مطالعه و بازسازی شرایط جایگیری کمپلکسهای نفوذی در زمان تشکیل و اثرات جایگیری آن بر روی سنگهای میزبان و سنگهای خود کمپلکس و همچنین تعبیر و تفسیر نیروهای تکتونیکی حاکم بر منطقه در آن زمان، استفاده از ریزساختارهای میکروسکوپی و دگرشکلیهای حادث شده بر روی کانیهای موجود در سنگها و سیمای کلی سنگ امری اجتناب ناپذیراست، زیرا تغییرات ایجاد شده بر روی کانیها و تشکیل انواع خاصی

از هر کدام از ریزساختارهای میکروسکوپی، مشخص کننده مرحله خاصی از روند جایگیری کمپلکس میباشد. با توجه به تنوع لیتولوژیکی و وجود گسلها و دایکهای اسیدی و بازیک فراوان در منطقه، تصمیم بر آن شد تا از کل کمپلکس بهصورت سیستماتیک نمونهبرداری گردد. در مجموع از ۹۶ ایستگاه، نمونهبرداری انجام شد. هدف از این تحقیق آن است که با استفاده از مطالعات پتروفابریک و بررسی تغییرات کانی شناسی و بافتی در گرانیتوئیدهای تغییر شکل یافته و همچنین معیارهایی مانند تغییر در اندازه دانهها، شکل و رفتار کانیها در مقیاس میکروسکوپی، بتوان دگر شکلیها و ریزساختارهای موجود در سنگهای متنوع بمپلکس را مطالعه و ارتباط آنها را با نحوه جایگیری کمپلکس بررسی نمود.

^{*} نویسنده مرتبط esmaili@khayam.ut.ac.ir

مطالعه ریز ساختارها در کمپلکس ...

زمينشناسىعمومى

کمپلکس گرانیتوئیدی بروجرد در شمالغرب پهنه سنندج – سیرجان و در شرق و جنوب شرق شهرستان بروجرد واقع شده است (شکل ۱).

قدیمی ترین نهشته های این منطقه مربوط به تریاس می باشد که در جنوب شرق بروجرد رخنمون داشته و شامل متاولکانیک هایی با درون لایه های مرمر نازک تا ضخیم لایه می باشد (Stöcklin, 1968). بر اساس مطالعات قبلی (احمدی خلجی، (۱۳۸۵) مشخص شد توده گرانیتوئیدی بروجرد از نوع کالک آلکالن و غنی از پتاسیم (پتاسیک) بوده و از نظر درجه اشباع زئوشیمیایی بدست آمده از تغییرات عناصر نادر خاکی، حاکی از نقش اساسی پوسته، در تغییر و تحولات ماگمای سازنده توده گرانیتوئیدی می باشد. عناصر کمیاب نیز، دارای نقاط بیشینه و می رسد توده گرانیتوئیدی بروجرد در منطقه قوس آتشفشانی تشکیل شده باشد (احمدی خلجی، ۱۳۸۵).

پتروگرافی

مطالعات صحرایی و پتروگرافی نشان دهنده آن است که این کمپلکس از سه واحد اصلی گرانودیوریت (شکل ۲- a)، مونزوگرانیت (شکل ۲- b) و کوارتزدیوریت تشکیل شده است. همچنین سنگهای گرانیتی روشن اسفندار، دایکهای اسیدی،

رگههای کوارتز – تورمالین (شکل ۲– c) و دایکهای بازیک و حد واسط (شکل ۲– d) نیز در منطقه قابل تشخیص است (احمدی خلجی، ۱۳۸۵).

سنگهای گرانودیوریتی، حجم عمده تودهٔ نفوذی بروجرد را تشکیل داده و در حقیقت بدنهٔ اصلی این کمپلکس بوده و همبری آنها با سنگهای دگرگونی مجاورتی اطرافشان به خوبی قابل تشخیص است. بافت این سنگها گرانولار بوده و از نظر كانى شناسى شامل: پلاژيوكلاز، آلكالى فلدسپار، كوارتز و بيوتيت و کانی های فرعی آلانیت، آیاتیت، اسفن، زیرکن و کانی های ایک میباشند. در بخشهایی، این سنگها به فراوانی دچار دگرسانی شده و تقريباً همهٔ سنگ بهطور كامل تجزیه شده است. واحد سنگی کوارتزدیوریتی، در صحرا به رنگ خاکستری بوده و به صورت کمپلکس های کوچک و مجزا درون واحد گرانودیوریتی رخنمون دارد، به همین دلیل تفکیک این دو واحد در صحرا از يكديگر مشكل مىباشد. تركيب كانىشناسى اين سنگھا مشابه واحد گرانودیوریتی بوده، با این تفاوت که مقدار آمفیبول و پلاژیوکلاز این سنگها بیشتر و مقدار کوارتز و آلکالیفلدسیار آنها کمتر است. نتایج بهدست آمده از سن سنجی به روش U-Pb زیرکن، محدوده سنی ۱۷۱–۱۷۵ را برای کمپلکس گرانیتوئیدی بروجرد نشان مي دهد. اين مسأله بيانگر آن است كه تشكيل این توده از ابتدا تا زمان جایگزینی آخرین فازهای ماگمایی آن، در طول مدت زمان نسبتاً کوتاهی (کمتر از چهار میلیون سال) در ژوراسیک میانی (باژوسین) رخ داده است (احمدی خلجی،

شکل ۱- نقشه پتروگرافی گرانیتوئید بروجرد که محل پهنههای چهارگانه با شماره بر روی آن مشخص است: ۱- پهنه ماگمایی و ساب ماگمایی، ۲- پهنه حالت جامد دما بالا، ۳ - پهنه حالت جامد دما پایین و ٤- پهنه ساب میلونیتی و میلونیتی

شکل ۲- a- نمایی از گرانودیوریتهای منطقه مورد مطالعه، b- نمایی از مونزودیوریتهای گوشه که به دلیل عدم هوازدگی و تازهگی و خوش رنگ بودن به صورت سنگ ساختمانی استخراج می شود، c - نمایی از یک رگه پگماتیتی که در درون واحد گرانودیوریتی تزریق شده است و d بازیک، Grd گرانودیوریت و Dy.M دایک بازیک

(۱۳۸۵). اما آنالیز پنج تک بلور زیرکن مربوط به منطقه گوشه، سن بسیار جوانتری معادل ۳٤,۷ میلیون سال (ائوسن پایانی) را برای این منطقه نشان میدهد که این مسأله حاکی از منحصر به فرد بودن منطقه گوشه نسبت به کمپلکس اصلی بروجرد می باشد و در نتیجه باید انتظار داشت که ریزساختارهای میکروسکپی در منطقه گوشه متفاوت از ریزساختارهای کمپلکس اصلی باشد. ریزساختارهای گوشه ماگمایی است و نشان می دهد که نسبت به بقیه کمپلکس گرانیتوئیدی بروجرد کمتر دچار دگرشکلی شده است.

سنگهای دگرگونی موجود در منطقه شامل دو سری دگرگونی ناحیهای درجه پایین و مجاورتی درجه پایین تا بالا می باشد. مرزبندی این دو دگرگونی با توجه به شواهد بافتی و تغییرات کانی شناسی صورت گرفته است. دگرگونی ناحیهای شامل اسلیتها و فیلیتها می باشد که تغییرات بافتی محسوسی را نشان نمی دهند. دگرگونی مجاورتی با شیستهای لکه دار شروع شده و به هورنفلسها و میگماتیتها ختم می گردد. دگرگونی

ناحیهای با طیفی از شرایط رخساره شیست سبز دیده می شود که در طی نفوذ توده گرانیتوئیدی در امتداد سطح شیستوزیته آنها، یک مجموعه دگرگونی مجاورتی دمای بالا- فشار پایین حاصل شده است. در بخش جنوبی توده، دگرگونی مجاورتی به دلیل گسلهبودن (Masoudi et al., 2002، احمدی خلجی، ۱۳۸۵) یا ناقص است و یا مشاهده نمی شود و نوار باریکی از شیستهای كرديريتداريا كرديريت هورنفلس كه به اسليت و فيليت ختم شده وجود دارد. ولی در بخشهای شمالی توده، میگماتیتهای تزریقی (Tullis et al., 1999) و هورنفلس ها دیده می شود (Masoudi et al., 2002)، احمدی خلجی، ۱۳۸۵). به منظور درک ارتباط سنگهای دگرگونی میزبان و سنگهای کمیلکس گرانیتوئیدی بروجرد، از دور تا دور کمیلکس اصلی، یعنی از سنگهای میزبان، شیب و امتداد لایهبندی اندازهگیری شده است (جدول ۱). با نشان دادن دادههای مربوط به این جدول بر روی نقشه زمین شناسی منطقه (شکل۳) و رسم استریوگرام (شکل٤) مربوطه، مشخص شد که کمپلکس گرانیتوئیدی بروجرد در امتداد افتاده است که این دگرشکلیها به صورت ساختارهای صفحهای S1, S2, S3 ظاهر شدهاند. دگرشکلی اول به واسطه چینهای بسته تا موازی با سطح محوری افقی و با یک شیستوزیته بارز مشخص میشود. دگرشکلی دوم که همانند سایر مناطق سنندج – سیرجان، حادثه اصلی دگرشکلی در منطقه می باشد و با چینهای بسته با شیب زیاد تا قائم مشخص می شود. دگرشکلی سوم در مقیاس میکروسکوپی و به صورت یک کلیواژ خمیده دیده می شود. شیستوزیته غالب سنگهای دگرگونی میزبانش تزریق گردیده است و دگرشکلیهای موجود در حاشیه کمپلکس ارتباط ژنتیکی آشکاری با سنگهای میزبان خود دارند. طبق مطالعات قبلی (احمدی خلجی، ۱۳۸۵) مشخص شده است که دگرشکلیهای موجود در سنگهای دگرگونی منطقه، به صورت چین خوردگیها و ساختارهای صفحهای متعدد نمایان شدهاند. در منطقه مورد مطالعه، حداقل سه فاز دگرشکلی در سنگهای دگرگونی اتفاق

DIP	DipDirection	SN
٥٨	٤٢	٥٧
٥٨	۳۸	٥٨
٥٦	٤٥	٥٩
07	٤٠	٦.
٦٨	07	71
77	٤٦	٦٢
٦٧	٤٠	717
٧٥	٢٥	78
00	٧٩	70
VV	VV	77
٥٦	٤.*	٦٧
77	٢٥	7.4
٤٧	٣.	79
٦٤	٤٢	٧.
٥٨	٣٢	٧١
٦.	٣٥	7
٥٧	۲۷	۷۳
٥٩	۲۸	٧٤
٥٦	٣.	٧٥
٥٤	٣٥	٧٦
٥٦	٥٧	VV
٥٩	٤٦	٧٨
0.	٤٥	٧٩
VV	٥٧	٨٠
78	٥.	۸١
7	00	71
٧.	٩٧	۸۳
01	90	٨٤

میزبان کمپلکس گرانیتوئیدی بروجره	شده از سنگهای ا	امتداد برداشت	مربوط به شيب و	حدول ۱- دادههای
----------------------------------	-----------------	---------------	----------------	-----------------

DIP	DipDirection	SN
٤٤	٤٠	٢٩
٣٦	۲۸	٣.
٥٤	٤٥	٣١
01	٤٨	٣٢
00	۲.	٣٣
٥٧	10	٣٤
٤٦	۲.	٣٥
٣٦	79.	77
٣٤	77	٣v
72	٩٧	٣٨
٥٣	٣.	٣٩
٣٦	70	٤٠
٣.	٣٥	٤١
١٩	٣٧	٤٢
٣٢	٥٧	٤٣
۳v	77	٤٤
٣٧	70	٤٥
٦.	٤٠	٤٦
۲٦	0.	٤٧
٣٥	70	٤٨
٣٥	07	٤٩
٣٩	٤٠	0.
V۲	٨٢	01
٥.	VV	٥٢
٦٢	72	٥٣
٧١	١٣	٥٤
٦٥	٣٥	00
٧١	٤٤	07

DIP	DipDirection	SN
٣٥	00	١
٣٤	۲۸	۲
٣٦	huh	٣
١٦	۲۷.	٤
٣٠	770	٥
١٦	771	٦
٢	٤٨	V
۱.	٤٠	٨
۱.	٣٧	٩
۲	٥	۱.
72	١٢	11
71	٣٣٧	١٢
٣٩	190	١٣
٤٠	۲۱۳	١٤
٥.	70	١٥
٤٦	٦	17
٤٦	١٥	١٧
۲۷	307	١٨
١٥	١٣	١٩
٤٤	٣٤٨	۲.
۳۱	١.	71
۳.	•	۲۲
٤١	١٥	۲۳
٤٣	٦٧	72
٤٢	٤٥	70
٥٤	٣٤	77
71	٢٥	۲۷
77	٥۶	77

Archive of SID داریوش اسماعیلی و همکاران

DIP	DipDirection	SN
٣٣	۲۳	100
٣٦	*	107
٤٥	۲۸	101
77	٣٦	101
١٨	٥٢	109
۳۸	٤٥	17.
30	۲.	171
72	77	177
٥٣	٤٠	173
١٢	٣٣	178
١٨	V	170
٤٠	٤٦	177
٣٦	٥٣	177
٤٤	٣٤	174
٤٧	hh	179
٢٥	٣.	۱۷۰
١٨	۲٥	111
22	١٤	171
٤٧	٤٠	١٧٣
07	٢٦	175
٣٢	07	100
72	10	177
٥.	٤٥	771
77	00	777
٦٧	٤٦	773
٥٧	٦٥	778
10	777	770
17	12.	777
11	127	777
22	٩٤	777
٤١	٧٢	779
٦٢	٧٥	73.
٤٦	00	7371
٥.	٧٥	777
٣٦	00	7774

DIP	DipDirection	SN
V٨	٣٥	17.
۷٥	۲۷	١٢١
٥٠	٢٥	177
7	١٥	١٢٣
۸٦	١٠	172
٤٠	١٤	170
10	۱.	177
٣٤	77	177
٥٧	٨.	١٢٨
٥٨	٨.	179
00	٨.	۱۳.
٤٩	٤٠	131
٤٤	٤٧	١٣٢
00	٤٥	١٣٣
77	٤٦	132
٣٩	٣٥	180
۲۳	٣٢	187
٤٤	۲.	177
٤٥	١٠	۱۳۸
٤٢	۲	189
٤٠	79.	12.
0.	٣٤٥	181
٣٢	٣٤٥	127
٨٨	١٠	157
٨.	٥	188
٨٨	١٣	120
٤٠	•	127
٤٦	٣٥٠	157
٦٣	•	١٤٨
٨٩	٥	129
٨٩	٨	10.
٨٩	٩	101
22	٦.	107
٤٩	٥	107
٥٢	70	102

DIP	DipDirection	SN
٥١	٨٩	٨٥
VV	٣.	۸٦
٧.	٣٧	٨V
۸١	٤٤	ЛЛ
77	٣.	٨٩
٤٠	٤٨	٩.
30	٨٠	٩١
٣٤	٣٤٥	٩٢
۳۱	٣.٢	٩٣
72	TVV	٩٤
٤٣	٨٣	٩٥
٤٤	٩٧	97
77	٩٨	٩٧
٣٤	777	٩٨
٤٠	۲۷۳	٩٩
07	707	1
07	۲۸	1•1
٤٩	۲۳	1.7
7/	٣٥	1.٣
٤٣	177	1.2
01	17.	1.0
07	110	1.7
٥٤	٤٧	١٠٧
٤٠	٣٧	١٠٨
١١	٥٣	1.9
٨٩	۲۳۰	11.
٧١	٣٥	111
۸١	٤٦	١١٢
٨٦	٣.	1117
٨٢	٤٢	112
٧٢	٤٠	110
٨٩	۲۲.	117
٥٧	٤٠	111
٧١	٣٥	114
٤٠	۲۷	119

Archive of SID

مطالعه ریزساختارها در کمپلکس ...

DIP	DipDirection	SN
٤٧	١٧٧	717
٤٦	۲۸	717
77	٢٥	717
٣٤	٥٨	719
٥.	01	77.
٤٥	٣٤	303
٤٨	٣٥	307
37	۳۸	300
٥٣	•	307
٤٦	۲.	30V
٣١	٣٤	۳0۸
٤٠	٣	309
٣٤	Тол	٣٦.
٤٤	٦	371
٥٢	V	٣٦٢
०٩	٢	٣٦٣
٥٧	٥	٣٦٤
٣٩	٣.	٣٦٥
37	٣٥	877
٣٤	10	37V
٥٢	10	377
01	٣٢	379
०९	۲۳	۳۷.
٥٤	٣٢	371
٦٢	٦.	777
71	٦٤	rvr
٣١	٩	٣٧٤
٤٣	١٨	500
۲.	807	rv7
٦٤	٤٥	rvv
٥٧	07	۳VA
٥٧	٤٠	300
V	rov	۳۸۰
٦٣	۲.	۳۸۱
٤٤	٣٤٥	۳۸۲

DIP	DipDirection	SN
٦٤	۱.	١٨١
177	١٢	171
٨٠	70	۱۸۳
٨٩	٣٥	١٨٤
٨٩	٥٤	١٨٥
٨٩	00	١٨٦
۲۹	٦٢	١٨٧
٦٤	٦٣	١٨٨
0 +	٣٥	١٨٩
٣٤	٣٤٠	19.
۳۱	۳۱٦	191
۲٥	٣٢٤	197
١٨	٣٥	193
١٨	٤٣	198
٢٩	٨٧	190
٣٥	٦٤	197
٣٤	٦.	197
٤٠	٧٥	١٩٨
٢٥	٦٠	١٩٩
٣٦	00	7
٥٣	٥٨	7 • 1
11	٨٥	7.7
١٧	ЛЛ	۲۰۳
١٩	٤٥	۲ • ٤
۲۷	٥٠	7.0
٣٦	٧.	۲۰٦
٤٥	۱.	۲.۷
٤٧	17	۲۰۸
٦٤	WOV	7.9
٥.	٥٤	۲۱.
٤٦	٦٤	711
٦.	٦٧	717
17	107	۲۱۳
۲.	١٧.	718
٦	178	710

DIP	DipDirection	SN
٣٤	٤٠	٢٣٤
۲۸	٧.	730
٣٥	٨٠	737
٣٩	٧٣	777
٣٤	٦٥	۸۳۲
٨٩	٤٠	۲۳۹
٨٩	70	72.
٨٩	٤٤	781
٣٦	٣٢٣	727
٣٩	٣٢٤	723
٤٣	۲۳۸	722
٤٧	٥.	720
٥١	٥٣	727
03	٥٨	757
٤٧	٦٢	۲٤٨
٣٨	٣.	729
٥.	VV	70.
00	٣٥	701
٤٣	٣.	707
٤٧	27	707
٣٥	٦.	702
٣٤	٤٠	700
07	٤٢	707
۲.	۱.	707
٣٢	۲۳	707
٥.	٣٥	709
70	1.0	۲٦.
77	۱۰۰	771
٥٢	۲.	777
70	۲۸	773
٣٢	77	272
72	٣٦	١٧٧
٤	10	١٧٨
۱.	۲.	١٧٩
71	١٤	۱۸۰

Archive of SID داریوش اسماعیلی و همکاران

DIP	DipDirection	SN
٤٥	۲۸۰	777
۲۳	777	۲VA
٣٨	775	779
۲.	٦٣	۲۸۰
٣	٧٥	171
١٨	٤٠	777
٨	٤٥	777
١٥	1 • •	775
۲۳	٨٥	۲۸۵
١٤	۲۷.	۲۸٦
١٨	۲۷.	YAV
۱.	٢٨٤	۲۸۸
١٣	٣١٤	٢٨٩
۱.	110	79.
11	1.5	791
۱.	102	797
٦	۲۱۰	797
٥	۲۰۸	798
17	١٨٥	790
۲٥	٣٤٠	۲۹٦
۲.	٣	797
٣.	rov	۲۹۸
٣٢	٣٥٥	799
11	٣٥٠	۳۰۰
79	V	٣٠١
١٢	۲۱۸	۳۰۲
٣٤	۲۲.	٣.٣
١٤	۲۰٥	٣٠٤
11	٣٤.	٣٠٥
۲.	٨٥	٣.٦
٣v	١٦	۳.٧
79	٨	٣٠٨
٨٩	٢٥	۳۹۷
٥٤	٣٢	۳۹۸
٤٦	٣٧	٣٩٩

DIP	DipDirection	SN
٣٤	۲٥	۳۳.
18	٧٥	۱۳۳
١٣	74	7777
۳۱	٥٤	huh
١٩	793	٣٣٤
٨٩	٨٠	880
٨٩	74	444
٨٩	00	TTV
٦.	٤٧	٣٣٨
07	٣v	٢٣٩
٤٦	۲۳	٣٤.
٧.	۱.	321
٥٣	٣٥٣	327
٧.	300	٣٤٣
٥٤	١٢	٣٤٤
٥٨	١٥	320
٥٧	۱.	٣٤٦
٨٩	١٣	٣٤٧
٨٩	۲.	٣٤٨
٨٩	١٥	٣٤٩
٤٥	٣٥	۳0۰
٤٠	۳.	301
٤٣	٣٣	807
٤٦	rov	770
٣٤	٥	777
٤٠	V	777
٣٢	٣٤٤	771
٣٤	MON	779
٣٩	٥٧	۲۷.
٣٦	٧.	771
١٧	0	777
٤٢	٣٤٣	777
٣٢	*	٢٧٤
٥٤	٣٣٢	770
۲.	٨٠	777

DIP	DipDirection	SN
	- 12	
٨٩	٣.	۳۸۳
٨٩	٣٥	٣٨٤
٨٩	٣٩	۳۸٥
٤١	٥	۳۸٦
٤٦	۱.	۳AV
٤٥	٩	۳лл
٤٣	٢٥	۳۸۹
०٩	۲۸	٣٩.
٦٣	١٧	391
77	٣٣	397
۳٥	۲۸	۳۹۳
77	١٨	398
٨٩	٣.	390
٨٩	٦	۳۹٦
٣v	170	٣.٩
٣٤	1.0	۳۱.
٣٢	170	711
01	110	717
١٣	100	۳۱۳
۲.	11.	317
١٣	٨٥	310
۲۸	٧٥	۳۱٦
72	٣٤٥	MIN
٢٩	۳۳٥	۳۱۸
٣٦	١٤٧	m19
٤٣	171	۳۲.
٥٥	١١٨	۳۲۱
٣٣	٣٢٣	٣٢٢
٣٧	۳۱.	٣٢٣
٢٤	٣٢.	٣٢٤
٤٦	٥٦	870
07	٦٢	*77
٥٨	٥٢	77V
٤٢	٣٤٥	۳۲۸
٤٠	٣٤٨	779
	-	1

Archive of SID

مطالعه ریزساختارها در کمپلکس ...

DIP	DipDirection	SN
٧٤	١٣	٤٧٠
٧٤	٣٤٨	٤٧١
٧٢	۳۱۲	٤٧٢
77	122	٤٧٣
٦٢	٤٨	٤٧٤
٦٩	٨٧	٤٧٥
٤٩	٦١	٤٧٦
VV	01	٤٧٧
٦١	٧١	٤٧٨
٦.	٤١	٤٧٩
٨٥	٣٢	٤٨٠
٤٥	०٦	٤٨١
٦٢	٣٤	٤٨٢
٨V	٤	٤٨٣
٨٥	١٥	٤٨٤
٨٠	٤٠	٤٨٥
۸۳	۲.	٤٨٦
٨٥	١٧	٤٨٧
٨٤	٤٧	٤٨٨
٨٥	٤٣	٤٨٩
ЛЛ	١٤	٤٩٠
٨٦	۳۳.	٤٩١
٨٤	٣٤٤	٤٩٢
VV	۲۷	٤٩٣
ЛЛ	70	٤٩٤
٨V	441	٤٩٥
٨٠	٨٥	٤٩٦
٨V	VV	٤٩٧
٨٦	٥	٤٩٨
٧٤	١٥	٤٩٩
٨٨	٣٥	0 • •
٨٤	٦٢	0 • 1
۸۳	٥٨	0.7
٨٥	۲.	٥٠٣
٧٤	٧٥	٥٠٤

DIP	DipDirection	SN
०٦	07	٤٣٥
٦٧	07	٤٣٦
٤٦	72	٤٣٧
۸۳	170	٤٣٨
۳۱	277	٤٣٩
78	۲VA	٤٤٠
٧.	V۲	٤٤١
०٦	00	٤٤٢
٣٥	100	٤٤٣
٤١	٣٠٥	٤٤٤
٥٤	٤٠	٤٤٥
71	۳۱۰	٤٤٦
٣٣	٣٦	٤٤٧
7/	7371	٤٤٨
٨٨	٣٠٤	٤٤٩
77	m 1v	٤٥٠
٦.	٣٢٢	٤٥١
٤٥	۳۱۳	٤٥٢
٧١	۳٤٨	٤٥٣
٤٧	۳۲.	٤٥٤
٧٦	٨٦	٤٥٥
٥١	٨V	٤٥٦
٥٧	٨٢	٤٥٧
०٦	07	٤٥٨
०٦	V۲	٤٥٩
00	78	٤٦٠
٦٨	٦٣	٤٦١
٧٤	۲۷	٤٦٢
٥٧	٧٢	٤٦٣
٥٣	ЛЛ	٤٦٤
77	٧٢	٤٦٥
71	٥	٤٦٦
٥٣	۲	٤٦٧
٤٨	١٧٨	٤٦٨
٨٠	ЛЛ	٤٦٩

DIP	DipDirection	SN
0.	۲.	٤٠٠
٥٤	٨	٤٠١
۲۷	٣٥.	٤٠٢
٤٠	٣٥.	٤٠٣
٥٢	١٢	٤٠٤
०٩	٦	٤٠٥
٦٢	70 7	٤٠٦
٥٤	۲۳	٤٠٧
٥٣	٣.	٤٠٨
٤٥	١٧	٤٠٩
00	٨	٤١٠
٦.	١٥	٤١١
٤٢	٤	٤١٢
٦.	٣٥	٤١٣
٥٠	٣٢	٤١٤
٦٤	٤٣	٤١٥
۲۲	00	٤١٦
٤٠	V	٤١٧
۲۳	١٦	٤١٨
٤٢	۲۰۸	٤١٩
٦.	٨V	٤٢٠
V٨	ЛЛ	271
07	٧١	277
٨٥	00	٤٢٣
٥٣	٤٣	٤٢٤
ЛЛ	١٧٧	٤٢٥
77	٨٢	٤٢٦
٤١	٦	٤٢٧
٦٤	٨٦	٤٢٨
77	٧٦	٤٢٩
٧٦	٤٠	٤٣٠
٥٤	00	٤٣١
۳۸	٣٥٥	287
٦٤	۲۸٥	٤٣٣
٦٣	٧٤	٤٣٤

شکل ۳- با توجه به داده های جدول۱ که مربوط به شیب و امتداد برداشت شده از سنگ های میزبان می باشد، این پارامتر برای تمامی ایستگاههای مربوطه رسم شده است که به صورت (Host (St-D نمایش داده شده است.

شکل ٤- استریوگرام مربوط به شیستوزیته غالب سنگهای میزبان کمپلکس گرانیتوئیدی بروجرد

گروه بندی ریز ساختارهای میکروسکوپی در کمپلکس نمی شود و در قسمت های شمال و شمال غرب کمپلکس، ریزساختارهای میلونیتی به وفور یافت می شود و حالت حدواسط بین این دو نیز در بخشهای مختلف کمپلکس، قابل مشاهده است (شکل ۱). بر اساس مطالعات انجام شده بر روی ۹٤ نمونه از قسمتهای مختلف کمپلکس گرانیتوئیدی بروجرد، می توان ریزساختارها را در این کمپلکس به چهار پهنه به شرح زیر تقسیمبندی نمود:

گرانیتوئیدی بروجرد

بر اساس بررسیهای صحرایی و مطالعات میکروسکوپی مشخص شد که شدت دگرشکلیها در همه جای کمپلکس گرانیتوئیدی بروجرد یکسان نیست، شدت دگرشکلیها از غرب به شرق و از شمالغرب به سمت جنوبشرق کاهش می یابد. مثلاً در مونزوگرانیتهای گوشه، اثر خاصی از دگرشکلی دیده

مطالعه ریز ساختارها در کمپلکس ...

ريزساختار ساب سوليدوس حالت جامد دما بالا

پراکندگی ریزساختار حالت جامد دمای بالا در کمپلکس گرانیتوئیدی بروجرد، عمدتاً در شرق و جنوب شرق کمپلکس تا مرکز آن دیده می شود (شکل ۱). بررسی مقاطع میکروسکوپی این بخش نشان می دهد، بلورهای بیوتیت در اکثر سنگهای تغییر شکل نشان می دهند و یا کینگباند در آنها به وجود آمده است. باید توجه نشان می دهند و یا کینگباند در آنها به وجود آمده است. باید توجه داشت که در اکثر موارد ظهور کینگباند در دگر شکلی ها به علت لغزش کم ورقههای بیوتیت در امتداد سطوح کلیواژ نادر، می باشد (Vernon and Flood, 1987). به اعتقاد (Johnson et al., 2006) بیوتیت، سبب به سهولت لغزش ورقهها بر روی یکدیگر می گردد (شکل ۲- ۵). در مقاطع این پهنه، پلاژیوکلازها دارای حاشیههای گسیخته بوده و ماکلهای مکانیکی و پلی سنتیک تابدار از خود

ریزساختارهای ماگمایی و ساب ماگمایی

ریزساختارهای ماگمایی و ساب ماگمایی در کمپلکس گرانیتوئیدی بروجرد، در بخشی معروف به گرانیت گوشه واقع در جنوب غرب کمپلکس (شکل ۱) به خوبی گسترش یافتهاند. در این بخش کانی ها دگرشکلی از خود نشان نداده و متحمل تنشی خاصی نشدهاند. فقط ممکن است خاموشی موجی بسیار ضعیفی در کوارتز دیده شود و یا در حالت ساب ماگمایی بلورهای فلدسپار دچار شکستگی شوند (شکل ۲-۲) که علت این امر وجود صفحات کلیواژ و ماکل در دانه های فلدسپار می باشد (Vernon and Flood, 1987). بنابراین در حالت کلی، کانی ها ساختار و شکل اولیه خود را حفظ نمودهاند. این ریز ساختارها نشان می دهند بخش مزبور می تواند جوان ترین فعالیت ماگمایی در منطقه باشد زیرا دگر شکلی خاصی را متحمل نشدهاند (Masoudi et al., 2002)

شکله – a) خمیدگی و کج شدگی در بیوتیت، b) بیوتیت در حال تبدیل به مسکویت ثانویه، c) بیوتیت به صورت میکافیش، b) دگرسانی در فلدسپار و تبدیل آن به کانی های ثانویه از جمله کانیهای رسی، e) بافت پرتیتی در فلدسپار و f) کوارتز در حال تبلور مجدد و دارای مهاجرت مرز دانه بهصورت آمیبی

شکل آ- a) پهنه ماگمایی (کانی ها بدون هیچ تغییری دیده می شوند)، b) رگهای از کوارتز در داخل فلدسپار دیده می شود که مؤید حالت ساب ماگمایی است. همچینین به ماکل پلی سنتیک فلدسپار هم توجه گردد، c) پهنه حالت جامد دما بالا، b) پهنه حالت جامد دما پایین و f و e) پهنه ساب میلونیتی – میلونیتی (کوارتزها تبلور مجدد گسترده نشان میدهد)

نشان میدهند (شکل ٦- b). در بسیاری از مقاطع این پهنه در فلدسپارها بافت پرتیتی را میتوان مشاهده نمود (شکل ٥- e). همچنین تبلور مجدد در کوارتز با مهاجرت مرز دانه بهصورت آمیبی و استیلولیتی اتفاق افتاده است (شکل ٥- f) این حالت مؤید حرارت بالا در گرانیتوئیدها میباشد و در شرایطی که اختلاف تنش شدید و مقدار تنش برشی بیشینه باشد، بر اثر تبلور مجدد چرخشی، دانههای کوارتز در اندازههای تقریبا مساوی، ریز و کوچک شده و با چرخیدن، به موازات سطح برگوارگی قرارگرفتهاند (Passchier, 1982). وجود تمامی شواهد فوق، حاکی از عملکرد تنشهای تکتونیکی در حالت شکلپذیر بر سنگهای این پهنه میباشد.

ریزساختارهای سابسولیدوس حالت جامد دما پایین

این پهنه در کمپلکس گرانیتوئیدی بروجرد از مرکز به طرف

غرب و جنوبغرب کمپلکس گسترش دارد (شکل ۱). مطالعه میکروسکوپی مقاطع نازک نشان میدهد که بلورهای درشت بیوتیت تکهتکه و به اجتماع دانهریزی تبدیل شده است که مؤید تجدید تبلور میباشد. در این حالت بلورهای تکهتکه شده به تدریج جهتیابی کرده و سبب ایجاد برگوارگی در سنگ میشوند. همچنین ریزساختارهای ساب سولیدوس حالت جامد دمای پایین با خاموشی موجی شدید در کوارتز مشخص میشود (شکل ۲- e) (Passchier and Trouw, 1999). کانی پلاژیوکلاز نیز بهوسیله سریسیت، جایگزین گردیده است (شکل ۵- b).

ریزساختارهای ساب میلونیتی و میلونیتی

این پهنه در منطقه مورد مطالعه از مرکز به سمت شمال گسترش یافته، به طوری که می توان گفت از مرکز به سمت شمال شرق کمپلکس، بیشتر حالت ساب میلونیتی بوده و از مرکز به سمت اطق زمانی که ماگما به طور کامل متبلور و سرد شد، شکل می گیرند های (Benn et al., 1989; Bouchez et al., 1992; Esmaeily et al., دیل 2007)، مجموع شواهد، بیان کننده این واقعیت است که پهنههای ضی حالت ماگمایی و جامد دمای بالا، همزمان با جایگیری کمپلکس فی د و پهنههای حالت جامد دما پایین، ساب میلونیتی و میلونیتی ۵). حاصل فعالیت های پس از جایگیری کمپلکس می باشند. (یعنی شده زمانی که کمپلکس کاملا سرد و متبلور بوده و سنگها حالت ۵) و شکننده داشته اند) با دقت در نقشه پهنه بندی ریز ساختارهای ۲ رت منطقه مورد مطالعه، به آسانی می توان استنباط نمود که شدت ۹) و به شرق کمپلکس کاهش می باید. تمرکز شدت دگر شکلی ها در

شمال و غرب کمپلکس را می توان به وجود پهنههای برشی و گسلهای بسیار زیاد موجود در این مناطق نسبت داد. به نظر می رسد در این جا عملکرد پهنههای برشی موجب افزایش شدت دگرشکلیها و توسعه حالتهای میلونیتی و ساب میلونیتی گردد. در حالی که در مورد پهنه اول یعنی گرانیت گوشه دو حالت را می توان مطرح نمود:

اول این که آین قسمت خارج از عملکرد پهنههای برشی بوده و بنابراین از اثرات عملکرد پهنههای برشی در امان بوده است. دوم اینکه این پهنه حاصل فعالیتهای ماگمایی بعدی در منطقه می اشد. می توان گفت بعد از جایگزینی و سرد شدن کامل کمپلکس گرانیتوئیدی بروجرد، گرانیت گوشه به صورت جداگانه جایگزین شده است و بنابراین جوان تر از گرانیت بروجرد می اشد (Masoudi et al., 2002). نتایج این پهنهبندیها با مدل ارائه شده احمدی خلجی (۱۳۸۵) که بر اساس عناصر کمیاب و دادههای سن سنجی ایزو توپی اورانیم – سرب صورت پذیرفته و جایگزینی مرحله اواخر برخورد و پس از برخورد می داند، ساز گرارست. بر این اساس می توان گفت پهنههای سوم، چهارم و پنجم مربوط به اواخر برخورد و پهنههای اول و دوم مربوط به پس از برخورد هستند.

نتيجه گيري

در کمپلکس گرانیتوئیدی بروجرد، چهار نوع ریزساختار شامل ریزساختارهای ماگمایی و ساب ماگمایی، ریزساختار حالت جامد دما بالا، ریزساختار حالت جامد دما پایین و ریزساختارهای ساب میلونیتی تا میلونیتی قابل شناسایی است. به نظر میرسد که ریزساختارهای ماگمایی و حالت جامد دما بالا در زمانی که هنوز ماگما به طور کامل متبلور نشده و یا متبلور بوده ولی دمای آن نزدیک به سولیدوس بوده، شکل گرفتهاند در حالی که دو نوع پهنههای برشی شکل گرفته است. در حالت کلی شدت دگرشکلی و همچنین از غرب به شرق کاهش محسوس و چشمگیری نشان میدهد که بیارتباط با گستردگی پهنههای برشی و گسلها در مناطق غرب و شمال غرب منطقه نیست.

شمال غرب پهنه، میلونیتی می باشد (شکل ۱). در این مناطق که دگرشکلی بسیار شدید است، بیوتیت تجزیه و به کانی های ثانویهای از قبیل مسکویت، کلسیت، اپیدوت و کلریت تبدیل می گردد (احمدی خلجی، ۱۳۸۵) (شکل b-b). همچنین در بعضی مقاطع دیگر این پهنه، بیوتیت بهصورت میکافیش دیده میشود که جهت برش راستبر را به خوبی نشان میدهد (شکل o- o). در دگرشکلی درجه بالا، بلورهای فلدسپار می توانند دگرسان شده و تبدیل به کانی های ثانویهای از قبیل سریسیت، مسکویت و کانی های رسی (شکل a - o) شوند. فلدسیارهای سالم به ندرت در این پهنه مشاهده می شوند. در این پهنه، کوارتز به شدت تبلور مجدد پیدا نموده و خاموشی موجی شدید دارد (شکل f - J و e) و کوارتزهایی که در حین دگرشکلیهای مختلف قبلی، حاشیههای نامنظم و خاموشی موجی پیدا کرده بودند، ممکناست پس از افت نرخ دگرشکلی یا توقف آن، ناپایدار شده و به تناسب شرایط حاکم بر محيط، دچار تجديد تبلور شوند. بنابراين در اين پهنه به دليل تنش شدید، تغییرات اساسی در ساختار و بافت کانی ها به وقوع پیوسته است. بهطوری که تعیین ماهیت اولیه گرانیتها مشکل و سنگ به یک زمینه ریزدانه متشکل از کوارتر، سریسیت، کلریت، کلسیت و اپیدوت تبدیل شده است. بقایایی از دانههای درشت کوارتز و فلدسیار بهصورت پورفیروکلاست در این زمینه ریزدانه قرار می گیرند. پاراژنز کانی های ذکر شده نشان می دهد که این نوع دگرشکلی بهطور بارزی تحت شرایط دگرگونی رخساره شیست سبز درجه پايين صورت گرفته است ;Vernon and Flood, 1987) Tullis et al., 1999)، سنگها در بخشهایی که این ریزساختارها تشکیل شدهاند، به دلیل فرسایش بسیار زیاد، رخنمون کمی دارند.

بحث

دگرشکلیها در کمپلکس گرانیتوئیدی بروجرد بسیار متنوع میباشند. وجود چهار نوع بیوتیت شامل بیوتیتهای درشت اولیه که دچار کجشدگی و خمیدگی شدهاند، بلورهای ریزشده بیوتیت که خمیره سنگ شدهاند، بیوتیتهای التره شده و میکافیش ها، همچنین شکستگی های متعدد ایجادشده در فلدسپارها و تبلور مجدد در این کانیها و نهایتاً ریزشدگی و درجات مختلف دگرشکلی و خاموشی موجی در کوارتز، همگی مؤید تنوع تنشهای تکتونیکی، همزمان و بعد از جایگیری کمپلکس گرانیتوئیدی بروجرد میباشند. به اعتقاد Brown) and Parsons, 1981) و (Bouchez et al., 1990) از أنجا كه کمپلکس های گرانیتوئیدی طی جایگزینی و همچنین بعد از جایگزینی به شکلهای متفاوتی دچار دگرشکلی میشوند، لذا این کمپلکس ها می توانند شاخص های مفیدی از دگر شکلی های حادث شده در چنین مناطقی باشند. ریزساختارهای ماگمایی و حالت جامد دما بالا به ترتيب در حضور فاز مذاب باقيمانده و پس از انجماد کامل کمپلکس، اما در دمای بالا تشکیل می شوند. سایر دگرشکلی ها پس از جایگیری کمپلکس یعنی **Archive of SID** داریوش اسماعیلی و همکاران

microstructural evidence and numerical modeling. Journal of Structural Geology, 26, 1845-1865.

- Masoudi, F., Yardley. B.W.D. and Clif. R.A., 2002. Rb-Sr Geochronology of Pegmatites, Plutonic rocks and a Hornfels in the region south-West of Arak, Iran. Journal of Sciences, 13(3), 249-234.

- Passchier C.w., 1982. Mylonite deformation in the Saint-barthelemy Massif, French Pyrenees, with emphasis on the genetic relationship between ultramtylonite and pesudotachylyte. GUA papers of Geology, 116, 1-173.

- Passchier, C.W. and Trouw, R.A.J., 1999. Micro Tectonics. Springer Verlag Berlin Heidelberg in Germany.

- Stöcklin, J., 1968. Structural history and tectonics of Iran, A review. American Association Petroleum Geologists, 52, 1229-1258.

- Tullis, J., Stu[°]nitz, H., Teyssier, C. and Heilbronner, R., 1999. Deformation and microstructures microstructures in quartzo-feldspathic rocks. Journal of the Virtual Explorer, 84, 547-568.

-Vernon, R.H., 1999. Flame perthite in metapelitic gneisses in the Cooma Complex, SE Australia. American Mineralogist, 84, 1760-1765.

- Vernon, R.H. and Flood, R.H., 1987. Contrasting deformation and metamorphism of S and I type granitoids in the Lachlan Fold Belt, Eastern Australia. Tectonophysics 219: 241-256.

- Benn, K., Paterson, S.R., Lund, S., Pignotta, G.S. and Kruse, S., 1989. Magmatic fabrics in batholiths as markers of and plate kinematics: example of the Cretaceous Mt. Stuart batholith. Physics Chemistry Earth (A), 26, 343-352.

- Bouchez, J.L., Delas, C., Gleizes, G., Nedelec, A. and Cuney, M., 1992. Submagmatic microfractures in granites. Geology, 20, 35-38.

- Bouchez, J.L., Guillet, P. and Chevalier, F., 1990. Structures d'écoulements liés à la mise en place du granite de Guérande (Loire Atlantique, France). Bulletin Société Géologique France 7/XXIII, 387-399.

- Brown, W.L. and Parsons, I., 1981. Alkali feldspars, ordering rates, phase transformations and behaviour diagrams for igneous rocks. Mineralogical Magazine, 53, 25–42.

- Esmaeily, D., Bouchez, j.l. and Siqueira, R., 2007. Magnetic fabrics and microstructures of the Jurassic shahkuh granite pluton (lut block, Eastern Iran) and Geodynamic inference. Tectonophysics, 439, 149-17

- Johnson, S.E., Vernon, R. H. and Upton, P., 2006. Foliation development and progressive strain-rate partitioning in the crystallizing carapace of a tonalite pluton: