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Abstract. A group G is called an E-group if the Near-ring generated

by the endomorphisms of G in the near-ring of maps on G is a ring. It
is well known (see, e.g., Malone, 1995) that a group G is an E-group if

and only if each element commutes with its endomorphic images. For any

prime number p, we call an E-group which is also a p-group, a pE-group.
In this paper at first we explain general properties of E − groups. Also
we prove that an infinite finitely generated E-group is the direct product

of a central torsion-free subgroup and a finite subgroup. Next, we prove
that there is no 3E-group of nilpotency class 3 of order at most 310. Also

we construct a group of class 3 which is “very close” to be an E-group.
The following questions are central ones in this paper:

(1) What is the least number of generators of a finitely generated non-

abelian E-group?
(2) What is the minimum order of a finite non-abelian pE-group?

We prove that the minimal number of generators of a finitely generated

non-abelian E-group is 4.
In response to the question (2), we prove that the minimum order of

a finite non-abelian pE-group is p8, for any odd prime number p and this

order is 27 for p = 2.
Also we obtain a new class of E-groups.

As we have found that some of our results are valid for a very larger

class of finite p-groups than pE-groups, we study a class of p-groups for
every prime number p and we denote this class of p-groups by pE. (A finite

p-group G is called a pE-group if G is a 2-Engel group and all elements
of order at most pr lie in the center of G, where pr is exponent G

G′ ).

We classify all 3-generator pE-groups and pE-groups with cyclic derived

subgroup and determine endomorphisms of 3-generator pE-groups and
pE-groups. Finally we classify all pE-groups and pE-groups of order at

most p7 for any prime number p.
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