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ABSTRACT. Let R be a noetherian ring, a an ideal of R such that dim R/a =
1 and M a finite R—module. We will study cofiniteness and some other
properties of the local cohomology modules HE (M).

1. INTRODUCTION

Throughout R is a commutative noetherian ring. By a finite module we
mean a finitely generated module. For basic facts about commutative algebra
see [2] and [8] and for local cohomology we refer to [1].

Grothendieck [6], made the following.

Conjecture: For every ideal a and every finite R—module M, the module
Hom g(R/a,Hy(M)) is finite for all n.

Hartshorne [7] showed that this is false in general. However, he defined
a—cofinite modules and he asked the following question.

Question: Suppose that a is an ideal of R and M is a finite R—module.
When is Ext % (R/a, HZ (M)) finite for every i and j ?

Hartshorne [7] showed that if (R, m) is a complete regular local ring and M
a finite R-module, then H: (M) is a—cofinite in the following two cases.

(a) a is a nonzero principal ideal.
(b) a is a prime ideal with dim R/a = 1.

Yoshida [9] and Delfino and Marley [3] extended (b) to all dimension one
ideals a of an arbitrary local ring R.

An R—module M has finite Goldie dimension if M contains no infinite direct
sum of submodules. For a commutative noetherian ring, this can be expressed
in two other ways, namely that the injective hull E(M) of M decomposes as a
finite direct sum of indecomposable injective modules or that M is an essential
extension of a finite submodule.

A module M is weakly Laskerian, whenever for each submodule N of M, the
quotient M /N has just finitely many associated primes, see [5]. A module M is
a-weakly cofinite if Supp r(M) C V(a) and Ext %5 (R/a, M) is weakly Laskerian
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for all i. Clearly each a—cofinite module is a—weakly cofinite, but the converse
is not true in general see [4, Example 3.5 (i) and (ii)].

A module M is soclefree if it has no simple submodules, or in other words
Ass M NMax R = @. For example if M is a module over the local ring (R, m)
then the module M/T, (M), where I'y, (M) is the submodule of M consisting
of all elements of M annihilated by some high power m™ of the maximal ideal
m, is always soclefree.

In 2.3, we give a characterization of a—cofiniteness of local cohomology mod-
ules with case where a is a one-dimensional ideal in a non-local ring. In this
situation we also prove in 2.7, that the local cohohomology modules always
belong to a class introduced by Zdschinger in [10].

2. MAIN RESULTS

Proposition 2.1. Let M be a module over the noetherian ring R. The follow-
ing statements are equivalent.
(i) M is a finite R—module.
(il) My is a finite Ry —module for allmeMax R and Min p(M/N) is a finite
set for all finite submodules N C M.

Corollary 2.2. Let M be an R—-module such that Supp M C V(a) and My, is
aRy —cofinite for each maximal ideal m. The following statements are equiva-
lent.
(i) M is a—cofinite. _
(ii) For all j, Ming(Extl(R/a, M)/T) is a finite set for each finite sub-
module T of Ext7,(R/a, M).
Corollary 2.3. Let a an ideal of R such that dimR/a = 1, M a finite R—
module and i > 0. The following statements are equivalent:
(i) H.(M) is a—cofinite. _ '
(if) For all j, Mz’nR(E:E?fg,%(R/a,HL(M))/T) is a finite set for each finite
submodule T' of Ext’,(R/a, Hy(M)).

Corollary 2.4. If H.(M) (with dimR/a = 1) is an a~weakly cofinite module,
then it is also a—cofinite.

Next we will introduce a subcategory of the category of R—modules that has
been studied by Zoschinger in [10, Satz 1.6].

Theorem 2.5. (Zdschinger) For any R-module M the following statements
are equivalent.

(i) M satisfies the minimal condition for submodules N such that M /N is
soclefree.

(ii) For any descending chain N1 D No D N3 D ... of submodules of M,
there is n such that the quotients N;/N;11 have support in Maz R for
alli>n.

(iii) With L(M)= @ Tw(M), the module M/L(M) has finite Goldie

meMazR
dimension, and dimR/p <1 for allp € Assr(M).
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If they are fulfilled, then for each monomorphism f: M — M,
Supp g(Coker f) C MazR.

We will say that M is in the class Z if M satisfies the equivalent conditions
in 2.5.

Proposition 2.6. The class Z is a Serre subcategory of the category of R—
modules, that is Z s closed under taking submodules, quotients and extensions.

Theorem 2.7. Let N be a module over a noetherian ring R and a an ideal of
R such that dimR/a = 1. If Ny, is aRy—cofinite for all m € Max R, then N is
in the class Z. In particular, if M is a finite R—module then H;(M) is in the
class Z for all i.
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