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Abstract. Let R be a noetherian ring, a an ideal of R such that dim R/a =
1 and M a finite R–module. We will study cofiniteness and some other

properties of the local cohomology modules Hi
a(M).

1. Introduction

Throughout R is a commutative noetherian ring. By a finite module we
mean a finitely generated module. For basic facts about commutative algebra
see [2] and [8] and for local cohomology we refer to [1].

Grothendieck [6], made the following.
Conjecture: For every ideal a and every finite R–module M , the module

Hom R(R/a,Hn
a (M)) is finite for all n.

Hartshorne [7] showed that this is false in general. However, he defined
a–cofinite modules and he asked the following question.

Question: Suppose that a is an ideal of R and M is a finite R–module.
When is Ext i

R(R/a,Hj
a(M)) finite for every i and j ?

Hartshorne [7] showed that if (R,m) is a complete regular local ring and M
a finite R–module, then Hi

a(M) is a–cofinite in the following two cases.
(a) a is a nonzero principal ideal.
(b) a is a prime ideal with dim R/a = 1.

Yoshida [9] and Delfino and Marley [3] extended (b) to all dimension one
ideals a of an arbitrary local ring R.

An R–module M has finite Goldie dimension if M contains no infinite direct
sum of submodules. For a commutative noetherian ring, this can be expressed
in two other ways, namely that the injective hull E(M) of M decomposes as a
finite direct sum of indecomposable injective modules or that M is an essential
extension of a finite submodule.

A module M is weakly Laskerian, whenever for each submodule N of M , the
quotient M/N has just finitely many associated primes, see [5]. A module M is
a–weakly cofinite if Supp R(M) ⊂ V(a) and Ext i

R(R/a,M) is weakly Laskerian
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for all i. Clearly each a–cofinite module is a–weakly cofinite, but the converse
is not true in general see [4, Example 3.5 (i) and (ii)].

A module M is soclefree if it has no simple submodules, or in other words
Ass M ∩MaxR = ∅. For example if M is a module over the local ring (R,m)
then the module M/Γm(M), where Γm(M) is the submodule of M consisting
of all elements of M annihilated by some high power mn of the maximal ideal
m, is always soclefree.

In 2.3, we give a characterization of a–cofiniteness of local cohomology mod-
ules with case where a is a one-dimensional ideal in a non-local ring. In this
situation we also prove in 2.7, that the local cohohomology modules always
belong to a class introduced by Zöschinger in [10].

2. Main results

Proposition 2.1. Let M be a module over the noetherian ring R. The follow-
ing statements are equivalent.

(i) M is a finite R–module.
(ii) Mm is a finite Rm–module for all m∈MaxR and Min R(M/N) is a finite

set for all finite submodules N ⊂ M .

Corollary 2.2. Let M be an R–module such that SuppM ⊂ V(a) and Mm is
aRm–cofinite for each maximal ideal m. The following statements are equiva-
lent.

(i) M is a–cofinite.
(ii) For all j, Min R(Ext j

R(R/a,M)/T ) is a finite set for each finite sub-
module T of Ext j

R(R/a,M).

Corollary 2.3. Let a an ideal of R such that dimR/a = 1, M a finite R–
module and i ≥ 0. The following statements are equivalent:

(i) Hi
a(M) is a–cofinite.

(ii) For all j, Min R(Ext j
R(R/a,Hi

a(M))/T ) is a finite set for each finite
submodule T of Ext j

R(R/a,Hi
a(M)).

Corollary 2.4. If Hi
a(M) (with dimR/a = 1) is an a–weakly cofinite module,

then it is also a–cofinite.

Next we will introduce a subcategory of the category of R–modules that has
been studied by Zöschinger in [10, Satz 1.6].

Theorem 2.5. (Zöschinger) For any R–module M the following statements
are equivalent.

(i) M satisfies the minimal condition for submodules N such that M/N is
soclefree.

(ii) For any descending chain N1 ⊃ N2 ⊃ N3 ⊃ . . . of submodules of M ,
there is n such that the quotients Ni/Ni+1 have support in MaxR for
all i ≥ n.

(iii) With L(M) =
⊕

m∈MaxR

Γm(M), the module M/L(M) has finite Goldie

dimension, and dimR/p ≤ 1 for all p ∈ Ass R(M).
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If they are fulfilled, then for each monomorphism f : M −→ M ,

Supp R(Coker f) ⊂ MaxR.

We will say that M is in the class Z if M satisfies the equivalent conditions
in 2.5.

Proposition 2.6. The class Z is a Serre subcategory of the category of R–
modules, that is Z is closed under taking submodules, quotients and extensions.

Theorem 2.7. Let N be a module over a noetherian ring R and a an ideal of
R such that dimR/a = 1. If Nm is aRm–cofinite for all m ∈ MaxR, then N is
in the class Z. In particular, if M is a finite R–module then Hi

a(M) is in the
class Z for all i.
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