Tarbiat Moallem University, 20th Seminar on Algebra, 2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 11-13

COFINITENESS OF LOCAL COHOMOLOGY MODULES OF DIMENSION ONE IDEALS IN NON-LOCAL CASE

Moharram Aghapournahr

Faculty of Sciences, Math. Dept.
Arak University
Beheshti St, P.O. Box:879, Arak, Iran
m-aghapour@araku.ac.ir

ABSTRACT. Let R be a noetherian ring, $\mathfrak a$ an ideal of R such that $\dim R/\mathfrak a=1$ and M a finite R-module. We will study cofiniteness and some other properties of the local cohomology modules $\mathrm{H}^i_{\mathfrak a}(M)$.

1. Introduction

Throughout R is a commutative noetherian ring. By a finite module we mean a finitely generated module. For basic facts about commutative algebra see [2] and [8] and for local cohomology we refer to [1].

Grothendieck [6], made the following.

Conjecture: For every ideal \mathfrak{a} and every finite R-module M, the module $\operatorname{Hom}_R(R/\mathfrak{a}, \operatorname{H}^n_{\mathfrak{a}}(M))$ is finite for all n.

Hartshorne [7] showed that this is false in general. However, he defined \mathfrak{a} -cofinite modules and he asked the following question.

Question: Suppose that \mathfrak{a} is an ideal of R and M is a finite R-module. When is $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, \operatorname{H}_{\mathfrak{a}}^{j}(M))$ finite for every i and j?

Hartshorne [7] showed that if (R, \mathfrak{m}) is a complete regular local ring and M a finite R-module, then $H^i_{\mathfrak{g}}(M)$ is \mathfrak{a} -cofinite in the following two cases.

- (a) a is a nonzero principal ideal.
- (b) \mathfrak{a} is a prime ideal with dim $R/\mathfrak{a}=1$.

Yoshida [9] and Delfino and Marley [3] extended (b) to all dimension one ideals \mathfrak{a} of an arbitrary local ring R.

An R-module M has finite Goldie dimension if M contains no infinite direct sum of submodules. For a commutative noetherian ring, this can be expressed in two other ways, namely that the injective hull $\mathrm{E}(M)$ of M decomposes as a finite direct sum of indecomposable injective modules or that M is an essential extension of a finite submodule.

A module M is weakly Laskerian, whenever for each submodule N of M, the quotient M/N has just finitely many associated primes, see [5]. A module M is \mathfrak{a} -weakly cofinite if $\operatorname{Supp}_R(M) \subset \operatorname{V}(\mathfrak{a})$ and $\operatorname{Ext}^i_R(R/\mathfrak{a},M)$ is weakly Laskerian

2000 Mathematics Subject Classification: 13D45, 13D07.

keywords and phrases: Cofinite modules, weakly Laskerian modules.

12

for all i. Clearly each \mathfrak{a} —cofinite module is \mathfrak{a} —weakly cofinite, but the converse is not true in general see [4, Example 3.5 (i) and (ii)].

A module M is *soclefree* if it has no simple submodules, or in other words Ass $M \cap \operatorname{Max} R = \emptyset$. For example if M is a module over the local ring (R, \mathfrak{m}) then the module $M/\Gamma_{\mathfrak{m}}(M)$, where $\Gamma_{\mathfrak{m}}(M)$ is the submodule of M consisting of all elements of M annihilated by some high power \mathfrak{m}^n of the maximal ideal \mathfrak{m} , is always soclefree.

In 2.3, we give a characterization of \mathfrak{a} -cofiniteness of local cohomology modules with case where \mathfrak{a} is a one-dimensional ideal in a non-local ring. In this situation we also prove in 2.7, that the local cohomology modules always belong to a class introduced by Zöschinger in [10].

2. Main results

Proposition 2.1. Let M be a module over the noetherian ring R. The following statements are equivalent.

- (i) M is a finite R-module.
- (ii) $M_{\mathfrak{m}}$ is a finite $R_{\mathfrak{m}}$ -module for all $\mathfrak{m} \in MaxR$ and $Min_R(M/N)$ is a finite set for all finite submodules $N \subset M$.

Corollary 2.2. Let M be an R-module such that $Supp M \subset V(\mathfrak{a})$ and $M_{\mathfrak{m}}$ is $\mathfrak{a}R_{\mathfrak{m}}$ -cofinite for each maximal ideal \mathfrak{m} . The following statements are equivalent.

- (i) M is a-cofinite.
- (ii) For all j, $Min_R(Ext^j_R(R/\mathfrak{a}, M)/T)$ is a finite set for each finite submodule T of $Ext^j_R(R/\mathfrak{a}, M)$.

Corollary 2.3. Let \mathfrak{a} an ideal of R such that $\dim R/\mathfrak{a} = 1$, M a finite R-module and $i \geq 0$. The following statements are equivalent:

- (i) $H^i_{\mathfrak{a}}(M)$ is \mathfrak{a} -cofinite.
- (ii) For all j, $Min_R(Ext_R^j(R/\mathfrak{a}, H_{\mathfrak{a}}^i(M))/T)$ is a finite set for each finite submodule T of $Ext_R^j(R/\mathfrak{a}, H_{\mathfrak{a}}^i(M))$.

Corollary 2.4. If $H^i_{\mathfrak{a}}(M)$ (with $\dim R/\mathfrak{a}=1$) is an \mathfrak{a} -weakly cofinite module, then it is also \mathfrak{a} -cofinite.

Next we will introduce a subcategory of the category of R-modules that has been studied by Zöschinger in [10, Satz 1.6].

Theorem 2.5. ($Z\ddot{o}schinger$) For any R-module M the following statements are equivalent.

- (i) M satisfies the minimal condition for submodules N such that M/N is soclefree.
- (ii) For any descending chain $N_1 \supset N_2 \supset N_3 \supset \ldots$ of submodules of M, there is n such that the quotients N_i/N_{i+1} have support in Max R for all $i \geq n$.
- (iii) With $L(M) = \bigoplus_{\mathfrak{m} \in Max_R} \Gamma_{\mathfrak{m}}(M)$, the module M/L(M) has finite Goldie dimension, and $\dim R/\mathfrak{p} \leq 1$ for all $\mathfrak{p} \in Ass_R(M)$.

If they are fulfilled, then for each monomorphism $f: M \longrightarrow M$,

 $Supp_R(Coker f) \subset Max R.$

We will say that M is in the class $\mathcal Z$ if M satisfies the equivalent conditions in 2.5.

Proposition 2.6. The class \mathcal{Z} is a Serre subcategory of the category of Rmodules, that is \mathcal{Z} is closed under taking submodules, quotients and extensions.

Theorem 2.7. Let N be a module over a noetherian ring R and \mathfrak{a} an ideal of R such that $\dim R/\mathfrak{a}=1$. If $N_{\mathfrak{m}}$ is $\mathfrak{a}R_{\mathfrak{m}}$ -cofinite for all $\mathfrak{m}\in MaxR$, then N is in the class \mathcal{Z} . In particular, if M is a finite R-module then $H^i_{\mathfrak{a}}(M)$ is in the class \mathcal{Z} for all i.

References

- [1] M.P. Brodmann, R.Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge University Press, 1998.
- [2] W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge University Press, revised ed., 1998
- [3] D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Alg. 121(1997), 45–52.
- [4] K. Divaani-Aazar, A. Mafi Associated primes of local cohomology modules of weakly Laskerian modules Comm. Algebra 34(2006), 681–690.
- [5] K. Divaani-Aazar, A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc. 133 (2005), 655–660.
- [6] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), North-Holland, Amsterdam, 1968.
- [7] R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970), 145-164.
- [8] H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.
- [9] K. I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147(1997), 179-191.
- $[10]\,$ H. Zöschinger, $Minimax\ Moduln,$ J. Algebra. ${\bf 102} (1986),\ 1\text{--}32.$