Tarbiat Moallem University, 20th Seminar on Algebra, 2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 14-15

ON THE CHARACTERIZATION OF SIMPLE GROUPS $B_n(q)$ AND $C_n(q)$

NEDA AHANJIDEH* AND ALI IRANMANESH

Department of Mathematics Tarbiat Modares University P.O.Box: 14115-137, Tehran, Iran iranmana@modares.ac.ir

ABSTRACT. Let G be a finite group and $\pi(G)$ be the set of prime divisors of the order of G. For $t \in \pi(G)$ denote by $n_t(G)$ the order of a normalizer of t- Sylow subgroup of G and put $n(G) = \{n_t(G) \mid t \in \pi(G)\}$. In this talk, we discuss about an answer to the following problem for the simple groups of Lie type B_n , C_n :

Let L be a finite non-abelian simple group and G be a finite group with n(L) = n(G). Is it true that $L \cong G$?

Also, we discuss about difference between orders of the solvable subgroups of the non-isomorphic simple groups $B_n(q)$ and $C_n(q)$.

1. INTRODUCTION

Characterization by orders of Sylow normalizers has first been considered by Bi in 1992 (see [2]). It is known that if G is $A_n(q)$, ${}^2A_n(q)$, $C_2(q)$, ${}^2D_n(q)$, alternating group, Mathieu simple groups, Janko groups and $Sz(2^{2m+1})$, then G is characterizable by orders of Sylow normalizers. In this talk, we discuss that if n = 2 or $q \not\equiv \pm 1 \pmod{8}$, then $B_n(q)$ and $C_n(q)$ are characterizable by orders of Sylow normalizers and otherwise, $B_n(q)$ and $C_n(q)$ are 2-recognizable by orders of Sylow normalizers.

For a finite group G, let $\operatorname{Ord}(\mathsf{S}_{sol}(G))$ be the set of orders of its solvable subgroups. The following conjecture was proposed by S. Abe and N. Iiyori [1]: Let G be a finite group and S be a non-abelian simple group. Then $G \cong S$ if and only if $\operatorname{Ord}(\mathsf{S}_{sol}(G)) = \operatorname{Ord}(\mathsf{S}_{sol}(S))$.

It was proved that if S is a simple group and G is a finite group such that $\operatorname{Ord}(\mathsf{S}_{sol}(G))=\operatorname{Ord}(\mathsf{S}_{sol}(S))$, then $G \cong S$ or $\{G,S\} = \{B_n(q), C_n(q)\}$, where $n \geq 3$ and q is an odd prime power (see [3]). The purpose of this talk is to prove that the $\operatorname{Ord}(\mathsf{S}_{sol}(B_n(q)))$ and $\operatorname{Ord}(\mathsf{S}_{sol}(C_n(q)))$ are distinct.

²⁰⁰⁰ Mathematics Subject Classification: 20D06, 20D20, 20G40, 20C33.

keywords and phrases: Sylow subgroup, Classical groups, Simple group of Lie type, Characterization, Irreducible linear group, solvable subgroups, Hall subgroup, Fitting subgroup.

15

2. Main results

Theorem 2.1. Let $S_{n,q} \in \{B_n(q), C_n(q)\}$ and let G be any finite group such that $n(S_{n,q}) = n(G)$. If $q \not\equiv \pm 1 \pmod{8}$, then G is isomorphic to $S_{n,q}$. Otherwise, G is isomorphic to $B_n(q)$ or $C_n(q)$.

Theorem 2.2. Let q be an odd prime power and $n \ge 3$. If $S \in \{B_n(q), C_n(q)\}$, then there are infinite pairs $\{(n,q)\}$ such that

$$\operatorname{Ord}(S_{sol}(B_n(q))) \neq \operatorname{Ord}(S_{sol}(C_n(q))).$$

Theorem 2.3. Let q be an odd prime power and $n \ge 3$. For the infinite pairs $\{(n,q)\}$, simple groups $B_n(q)$ and $C_n(q)$ are characterizable by orders of solvable subgroups.

References

- [1] S. Abe and N. Iiyori, A generalization of prime graphs of finite groups, Hokkaido Mathematical Journal **29** (2) (2000), 391-407.
- [2] J. Bi, A characterization of $L_n(q)$ by the normalizers' orders of their Sylow subgroups, Acta Math. Sinica (New Ser.) **11 (3)** (1995), 300-306.
- [3] K. Denecke, X. Li and J. Bi, A characterization of finite simple groups by the orders of solvable subgroups, Science in China Series A: Mathematics 50 (5) (2007), 715-726.