Tarbiat Moallem University, 20th Seminar on Algebra, 2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 31-34

On Graphs Whose Second Largest eigenvalue equals 1 ¹

L. Asgharsharghi²

Faculty of Mathematics and Computer Sciences
Amirkabir University of Technology
Tehran, Iran
leilab@aut.ac.ir

D. Kiani

Faculty of Mathematics and Computer Sciences
Amirkabir University of Technology
Tehran, Iran
dkiani@aut.ac.ir

Abstract

Let G be a graph of order n and let μ be an eigenvalue of multiplicity m. A star complement for μ in G is an induced subgraph of G of order n-m with no eigenvalue μ . Here we first identify among Cactus graphs, complete three partite graphs $K_{n,n,n}$, and bicyclic graphs which can be star complement for 1 as the second largest eigenvalue. Using the graphs obtained, we next search for their maximal extensions, either by theoretical means, or by computer aided search.

1 Introduction

Let G be a finite simple graph with an eigenvalue μ of multiplicity m; in other words, a (0,1)-adjacency matrix G has a μ -eigenspace of dimension m. An m-subset X of V(G) is called a star set for μ in G if μ is not an eigenvalue of G-X. The induced subgraph H=G-X is said to be a star complement for μ in G. If G has star complement H for μ , and G is not a proper induced subgraph of some other graph with star complement H for μ , then G is a maximal graph with star complement H for μ .

A Coctus graph is a connected graph in which any two simple cycles have at most one vertex in common; Equivalently, every edge in such a graph may

¹ Mathematics Subject Classification[2000]: 13D45, 13D07 Keywords: Star complement, adjacency matrix, graph eigenvalues.

 $^{^2}$ Speaker.

belong to at most one cycle. In this paper we will determine all cactus graphs which can be star complement for $\lambda_2 = 1$ (second largest eigenvalue equals 1). Connected graphs in which the number of edges equals the number of vertices plus one are called bicyclic graph. The graphs with unicyclic graphs as a star complement were discussed in [2]. Here we show all bicyclic graphs which can be star complements for $\lambda_2 = 1$. Let $K_{n,n,n}(a,b,c)$ be a graph obtained from $K_{n,n,n}$ by introducing a new vertex and joining it to a vertices of first part, b vertices of second part and c vertices of third part. Let A = a + b + c and B = ab + ac + bc, here we discuss graphs with complete three partite graphs $K_{n,n,n}$ as a star complement for 1 as the second largest eigenvalue where $A \geq B$.

2 Main results

Theorem 2.1 All Cactus graphs which are star complement for $\lambda_2 = 1$ are trees and unicyclic graphs.

Theorem 2.2 A bicyclic graph H is a star complement for $\lambda_2 = 1$ if and only if it is one of the graphs depicted in Fig. 1.

Theorem 2.3 The strongly regular graphs don't have strongly regular graphs as a star complement for $\lambda_2 = 1$.

Theorem 2.4 If $H = K_{n,n,n}$ is a star complement for $\lambda_2 = 1$ and A and B be as defined above then n = 2, 3, 5 if and only if $A \ge B$.

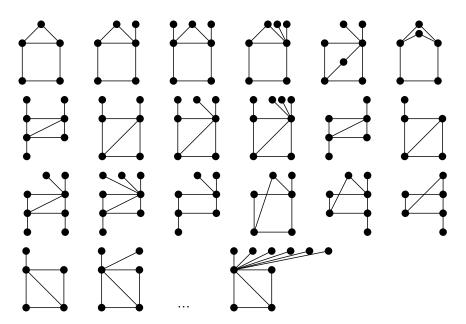


Fig.1

References

- [1] Z. Stanic, On graphs whose second largest eigenvalue equals 1-the star complement technique, Linear . Algebra Appl. 420 (2007), 700–710.
- [2] Z. Stanic, On graphs with unicyclic star complement for 1 as the second largest eigenvalue, preprint.
- [3] D. M. Cvetkovic, P. Rowlinson and S. K. Simic, *Eigenspaces of graphs*, Encyclopedia of mathematices and it's Applications, (1997).
- [4] P. Rowlinson, P.S. Jackson On graphs with complete bipartite star complements, Linear . Algebra Appl. 298 (1999), 9-20.