Tarbiat Moallem University, 20th Seminar on Algebra,
2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 55-57

RELATIVE FLATNESS AND ASYMPTOTIC BEHAVIOUR

F. DOROSTKAR

Department of Mathematics Faculty of Science University of Guilan dorostkar@guilan.ac.ir (Joint work with H. Ansari-Toroghy)

ABSTRACT. Let R be a commutative ring and let I be an ideal of R. Let M be a Noetherian R-modules. Let F be an R-module which is flat relative to M. Suppose M' is a submodule of M and let $T = F \otimes_R -$. Then it is shown that the sequences of sets

 $Ass_R(T(M)/I^n(T(M')))$ and $Ass_R(I^n(T(M))/I^n(T(M'))), n \in \mathbb{N}$ are ultimately constant.

1. INTRODUCTION

Throughout of this paper R will denote a commutative ring (with a nonzero identity), and **N** is the set of all positive integers.

Let I be an ideal of R and M be a Notherian R-module. If M' is a submodule of M it follows from [3]that both sequences of sets $Ass_R(M/I^nM')$ and $Ass_R(I^nM/I^nM')$, $n \in \mathbb{N}$ are ultimately constant.

Let R be a commutative Noetherian ring and let I be an ideal of R. Further assume that F is a flat R-module. Set $T = F \otimes_R -$. In [4], S. Yassemi showed that the $Ass_R(T(M))$ can be specified in terms of $Ass_R(M)$ and $Coass_R(F)$. Also it is shown that the sequences of sets

$$Ass_R(T(M/I^nM))$$
 and $Ass_R(T(I^nM/I^{n+1}M)), n \in \mathbb{N}$

are ultimately constant.

Now let M be an R-module and let the zero submodule of M have a primary decomposition. Let F be an R-module which is flat relative to M. Set $E = E(\bigoplus_{P \in Max(R)} R/P)$ and $F^{\vee} = Hom_R(F, E)$. In this paper we will generalize the results mentioned in last paragraph by showing that $M \otimes_R F$ has

a primary decomposition and its weakly associated primes can be specified (see 2.1) in terms of $W.Ass_R(M)$ and $Ass_R(F^{\vee})$ under an additional property. When R is a quasi-semi local ring, $W.Ass_R(M \otimes_R F)$ is specified (see 2.4) in

²⁰⁰⁰ Mathematics Subject Classification: 13D45, 13D07.

keywords and phrases: Relative flatness, associated primes, weakly associated primes, attached primes.

F. DOROSTKAR

terms of $W.Ass_R(M)$ and $Coass_R(F)$. Also when R is a commutative Noetherian ring, $Ass_R(M \otimes_R F)$ can be specified (see 2.3, 2.6) in terms of $Ass_R(M)$ and $Coass_R(F)$ without any restriction. Finally it is shown that if M is a Noetherian R-module then for every submodule M' of M, the sequences of sets

$$Ass_R((M \otimes_R F)/I^n(M' \otimes_R F)), n \in \mathbf{N}$$

and

56

$$Ass_{R}(I^{n}(M \otimes_{R} F)/I^{n}(M' \otimes_{R} F)), n \in \mathbb{N}$$

are ultimately constant (see 2.8). We recall that F is flat relative to M (or F is M-flat) if and only if for any submodule N of M, the homomorphism $F \otimes_R N \to F \otimes_R M$ is monic (see [1]).

2. Main results

Theorem 2.1. Let M be an R-module and let F be an R-module which is flat relative to M. Further assume that the zero submodule of M has a primary decomposition and $Ass_R(F^{\vee}) = W.Ass_R(F^{\vee})$, where $F^{\vee} = Hom_R(F, E)$ and $E = E(\bigoplus_{P \in Max(R)} R/P)$. Then $M \otimes_R F$ has a primary decomposition and we have

 $W.Ass_R(M \otimes_R F) = \{ P \in W.Ass_R(M) : P \subseteq Q \text{ for some } Q \in W.Ass_R(F^{\vee}) \}.$

Corollary 2.2. Let the situation be as in 2.1 and let F be flat R-module. Then we have

 $W.Ass_R(M \otimes_R F) = \{ P \in W.Ass_R(M) : P \subseteq Q \text{ for some } Q \in W.Ass_R(F^{\vee}) \}.$

Corollary 2.3. Let R be a commutative Noetherian ring and let M be an R-module. Let F be an R-module which is flat relative to M. Further assume that the zero submodule of M has a primary decomposition. Then $M \otimes_R F$ has a primary decomposition and we have

 $Ass_R(M \otimes_R F) = \{P \in Ass_R(M) : P \subseteq Q \text{ for some } Q \in Coass_R(F)\}.$

Corollary 2.4. Let R be a semi- quasi local ring and let M be an R-module with the property that its zero submodule has a primary decomposition. Further assume that F is an R-module which is flat relative to M and that $W.Coass_R(F) = Coass_R(F)$ (This is true, for example, when each element of $W.cass_R(M)$ is finitely generated by [[6], (2.4)]). Then we have

 $W.Ass_R(M \otimes_R F) = \{ P \in W.Ass_R(M) : P \subseteq Q \text{ for some } Q \in Coass_R(F) \}.$

Corollary 2.5. Let M be an R-module and let F be an R-module which is flat relative to M. Further assume that the zero submodule of M has a primary decomposition and $Ass_R(F^{\vee}) = W.Ass_R(F^{\vee})$, where $E = E(\bigoplus_{P \in Max(R)} R/P)$ and $F^{\vee} = Hom_R(F, E)$. Then $(M \otimes_R F) \neq 0$ if and only if there exits $P \in$

and $F^{\vee} = Hom_R(F, E)$. Then $(M \otimes_R F) \neq 0$ if and only if there exits $P \in W.Ass_R(M)$ such that $P \subseteq Q$ for some $Q \in Ass_R(F^{\vee})$. Further,

$$W.Ass_R(M \otimes_R F) = \bigcup_{P \in W.Ass_R(M)} W.Ass_R(F/PF).$$

Theorem 2.6. Let R be a commutative Noetherian ring and let M be an R-module. Let F be an R-module which is flat relative to M. Then we have

$$Ass_R(M \otimes_R F) = \{P \in Ass_R(M) : P \subseteq Q \text{ for some } Q \in Coass_R(F)\}.$$

Corollary 2.7. Let R be a commutative Noetherian ring let M be an R-module. let F be an R-module which is flat relative to M. Then we have

$$Ass_R(M \otimes_R F) = \bigcup_{P \in Ass_R(M)} Ass_R(F/PF).$$

Theorem 2.8. Let R be a commutative Noetherian ring and let M be a Noetherian R-module. Suppose F is an R-module which is flat relative to M. Let M' be a submodule of M and let $T = F \otimes_R -$. Then for an ideal I of R, the sequence of sets

$$Ass_R(T(M)/I^n(T(M')))$$
 and $Ass_R(I^n(T(M))/I^n(T(M'))), n \in \mathbb{N}$

are ultimately constant. If we denote the ultimate constant value of the above sequences by T_1 and T_2 , then we have

$$T_1 = \{P \in As^*(I, M', M) : P \subseteq Q \text{ for some } Q \in Coass_R(F)\}$$

and

$$T_2 = \{P \in Bs^*(I, M', M) : P \subseteq Q \text{ for some } Q \in Coass_R(F)\}$$

Theorem 2.9. Let M be a Noetherian R-module and suppose that F is an R-module which is flat relative to M. Let M' be a submodule of M and let $T = F \otimes_R -$. Then for an ideal I of R, the sequence of sets

$$Ass_R(T(M)/I^n(T(M')))$$
 and $Ass_R(I^n(T(M))/I^n(T(M'))), n \in \mathbb{N}$

are ultimately constant.

References

- F.W. Anderson and Kent R. Fuller, *Rings and Categories of Modules* (second edition), Springer-Verlag New York, 1992.
- H. Ansari-Toroghy, Relative injectivity and secondary representation, Southeast Asian Bulletin of Math., 28 (2004), 989-998.
- [3] D. E. Rush, Asymptotic primes and integral closure in modules, Quart.J. Math. Oxford (2) 43 (1992), 477-499.
- [4] S. Yassemi, *Coassociated primes*, Communication in Algebra, 23(1995), 1473-1498.
- [5] S. Yassemi, Coassociated primes of modules over commutative rings, Math Scand. 80 (1997), 175-187.
- [6] S. Yassemi, Weakly associated primes under change of rings, communication in Algebra,
 (6) 26 (1998), 2007-2018.
- [7] S. Yassemi, Weakly associated primes filtration, Acta Math. Hunger 92 (2001), 179-183.

57