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Abstract. A graph is half-transitive if its automorphism group acts

transitively on its vertex set and edge set, but not on its arc set. Let
p be a prime. Chao [On the classification of symmetric graphs with a

prime number of vertices, Trans. Amer. Math. Soc. 158 (1971) 247-256]
proved that there are no half-transitive graphs on p vertices. By Cheng

and Oxley [On weakly symmetric graphs of order twice a prime, J. Com-

bin. Theory B 42 (1987) 196-211], also there are no half-transitive graphs
of order 2p. In this paper an extension of the above results in the case

of tetravalent graphs is given. It is proved that there are no tetravalent

half-transitive graphs of order 2p2.

1. Introduction

Throughout this paper graphs are assumed to be finite, simple, unless oth-
erwise specified, connected and undirected (but with an implicit orientation of
the edges when appropriate). For a graph X we let V(X), E(X), A(X) and
Aut(X) be the vertex set, edge set, arc set and the full automorphism group
of X, respectively.

A graph X is said to be vertex-transitive, edge-transitive or arc-transitive
if Aut(X) acts transitively on V(X), E(X) or A(X), respectively. A graph is
said to be 1

2 -transitive or half-transitive provided that it is vertex-transitive and
edge-transitive, but not arc-transitive. More generally, by a 1

2 -transitive action
of a subgroup G of Aut(X) on a graph X we shall mean a vertex-transitive
and edge-transitive, but not arc-transitive action of G on X. In this case we
shall say that the graph X is (G, 1

2 )-transitive.
The investigation of half-transitive graphs was initiated by Tutte and he

proved that a vertex- and edge-transitive graph with odd valency must be arc-
transitive. In this paper, we show that there are no tetravalent half-transitive
graphs of order 2p2.
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2. Preliminaries

For a finite group G, and a subset S of G such that 1G /∈ S and S = S−1,
the Cayley graph Cay(G, S) on G with respect to S is defined to have vertex
set G and edge set {[g, sg] | g ∈ G, s ∈ S}. Given any element g ∈ G, we define
the permutation R(g) on G by x 7→ xg, x ∈ G. Then R(G) = {R(g) | g ∈ G}
is a permutation group isomorphic to G, which is called the right regular rep-
resentation of G. Actually, Aut(G, S) is a subgroup of Aut(Cay(G, S))1, the
stabilizer of the vertex 1 in Aut(Cay(G, S)).

For any abelian group H, the map h 7→ h−1, h ∈ H, is an automorphism
of H. In view of the proof of [4, Proposition 2.1], we have the following:

Proposition 2.1. Let Cay(G,S) be a half-transitive graph. Then, there is no
involution in S and no α∈ Aut(G, S) such that sα = s−1 for any given s ∈ S.

Next we quote a result from [1]

Proposition 2.2. Every edge-transitive Cayley graph on an abelian group is
also arc-transitive.

Proposition 2.3. There are no half-transitive graphs with fewer than 27 ver-
tices.

Proposition 2.4. Let H be a subgroup of a group G. We have CG(H) �

NG(H), and the factor group NG(H)/CG(H) is isomorphic to a subgroup of
Aut(H).

3. Main results

The following lemma is basic for our main result.

Lemma 3.1. There are no tetravalent half-transitive Cayley graphs of order
2p2 for each prime p.

By contradiction, let X = Cay(G, S) be a tetravalent half-transitive Cayley
graph on a group G of order 2p2 with respect to S. If X is not connected, then
each component has order p, 2p or p2. By [2, 3], there are no half-transitive
graphs of order p or 2p. Therefore each component has order p2 and so each
component is a Cayley graph of order p2. By Proposition 2.2, there is no
half-transitive Cayley graph on a group of order p2, a contradiction. Hence,
X is connected. By Proposition 2.3, one may let p ≥ 5 and by Proposition
2.2, G is non-abelian. From the elementary group theory we know that up
to isomorphism there are three non-abelian groups of order 2p2 defined by:
G1(p) = 〈a, b | ap2

= b2 = 1, b−1ab = a−1〉;
G2(p) = 〈a, b, c | ap = bp = c2 = [a, b] = 1, c−1ac = a−1, c−1bc = b−1〉;
G3(p) = 〈a, b, c | ap = bp = c2 = 1, [a, b] = [a, c] = 1, c−1bc = b−1〉.

Let G be a non-abelian group of order 2p2 and S = {x, y, x−1, y−1} be a
generating subset of G. If either of x or y has order 2, then by Proposition
2.1, X is half-transitive, a contradiction. Since the Sylow p-subgroup of G is a
normal subgroup of G, any two elements of order p or p2 cannot generate G.
Thus we can suppose o(x) = 2p and o(y) = p, 2p or p2.

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


TETRAVALENT HALF-TRANSITIVE GRAPHS OF ORDER 2p2 79

Now we prove that there exists an element of order p which is in the center
of G. Note that G = 〈x, y〉. When o(x) = 2p and o(y) = p or p2, it is easy to
see that x2 has order p and x2 ∈ Z(G). When o(x) = 2p and o(y) = 2p, we
have |〈x〉 ∩ 〈y〉| = 2 or p. If |〈x〉 ∩ 〈y〉| = 2, then the Sylow 2-subgroup of G is
normal in G. Since the Sylow p-subgroup of G is also normal, G is abelian, a
contradiction. Therefore 〈x〉∩〈y〉 has order p and 〈x〉∩〈y〉 ∈ Z(G), as required.

It is easily seen that only G = G3(p) has elements of order p which are in
its center. Thus we can suppose that G = G3(p) = 〈a, b, c | ap = bp = c2 =
1, [a, b] = [a, c] = 1, c−1bc = b−1〉 and so o(x) = 2p and o(y) = p or 2p.

It is easy to check that all the elements of order 2 are cbj (0 ≤ j < p). Thus
we suppose that x = cbjai (p - i). Since ai (p - i), b and cbj satisfy the same
relations as a, b and c, there is an automorphism σ of G such that (ai)σ = a,
bσ = b and (cbj)σ = c. Hence we may suppose x = ca.

If o(y) = p, then we may suppose y = aib, by an argument similar to that
above. Also with the same arguments as above, by considering Proposition 2.1,
we may get a contradiction. Now the proof is completed.

The following is the main result of this paper.

Theorem 3.2. Let p be a prime. Then there are no tetravalent half-transitive
graphs of order 2p2.

Let X be a tetravalent half-transitive graph of order 2p2. By Proposition
2.3, p ≥ 5. Now X is connected because there are no half-transitive graphs of
order p, 2p or p2, by Propositions 2.2, 2.5, and [2 ,3]. By Lemma 3.1, X is not
a Cayley graph. Let A=Aut(X). Then, A has no regular subgroups, that is,
no subgroups acting regularly on V(X).

Under the natural action of A on V(X) × V(X), A has two orbits on the
arc set of X, say A1 and A2. These are paired with each other, that is, A2 =
{(v, u)|(u, v) ∈ A1}. Thus, now one can get |A| = 2mp2 for some integer m,
implying that A is solvable. First we prove a claim.
Claim: A has a normal Sylow p-subgroup.

Suppose to the contrary that A has no normal Sylow p-subgroups. Let N be
a minimal normal subgroup of A. Since |A| = 2mp2, |N | = p or N has 2-power
order.

First assume that |N | = p and T = {xN
1 , xN

2 , ..., xN
2p} is the all orbits of N on

V(X). Let XN be the quotient graph of X corresponding to the orbits of N ,
with two orbits adjacent in XN whenever there is an edge between those orbits
in X. Then, |V (XN )| = 2p. Also let K be the kernel of A acting on V(XN ).
Clearly, A/K acts transitively on V(XN ) and E(XN ), respectively. Now if XN

has valency 3, then A/K acts transitively on A(XN ). It implies that 3 | |A|, a
contradiction. Hence XN has valency 2 or 4. Suppose that XN has valency 2.
Then XN is a cycle of length 2p and |Aut(XN )| = 4p. Therefore |A/K| | 4p.
Let µ ∈ V(X) and suppose that Kµ = 1. It follows that |K| = p, K = N and
so A/N is a subgroup of Aut(XN ). Therefore |A| | 4p2 and a Sylow p-subgroup
of A, say P , is normal in A, a contradiction. Thus Kµ 6= 1, which implies that
Kµ

∼= Z2. Hence |K| = 2p. Since A/K is a subgroup of Aut(XN ), one has
|A/K| | 4p. If |A/K| 6= 4p, then P � A, a contradiction. Hence |A/K| = 4p
and so |A| = 8p2. Thus 1 + np | 8. It follows that n = 1 and p = 7. Let Q be a
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Sylow 7-subgroup of K. Obviously Q is normal in K and hence Q is normal in
A. Put C = CA(Q). By Proposition 2.4, A/C is isomorphic to a subgroup of
Aut(Q)∼=Z6. Hence |A/C| | 2, because |A| = 8×72. It follows that |C| = 4×72,
or 8×72. For the first case P �C and so P �A, a contradiction. For the latter
case A = CA(P ) and so P ≤ Z(A). Therefore P � A, a contradiction. Thus
XN has valency 4, and we may get a same contradiction.

Now assume that N has order 2 power. Again we get a contradiction. Thus
the claim is true, that is, A has a normal Sylow p-subgroup. Denote by N the
unique normal Sylow p-subgroup of A. Let XN be the quotient graph of X
corresponding to the orbits of N , and K be the kernel of A acting V(XN ). The
normality of N implies that all orbits of N either have length p or have length
p2. Assume that the orbits of N have length p. Thus p divides the order of
Nα (for some α∈V(X)) and hence |Aα| is divisible by p. Therefore |Aα| has
an element of order p, a contradiction. Now assume that the orbits of N have
length p2. Again we may get a contradiction. This contradiction completes our
proof.
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