Tarbiat Moallem University, 20^{th} Seminar on Algebra, 2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 92-94

ON SEMIHYPERGROUPS AND REGULAR RELATIONS

H. HEDAYATI

Department of Mathematics
Babol University of Technology
Babol, Iran h.hedayati@nit.ac.ir, hedayati143@yahoo.com

ABSTRACT. We introduce two equivalence relations on semihypergroups. Also we discuss on some properties of these two relations and investigate on quotient semihypergroups via these relations.

1. Introduction and Preliminaries

The theory of algebraic hyperstructures which is a generalization of the concept of ordinary algebraic structures was first introduced by Marty [4]. Since then many researchers have worked on algebraic hyperstructures and developed it. A short review of this theory appears in [1]. A recent book [2] contains a wealth of applications. Via this book, Corsini and Leoreanu presented some of the numerous applications of algebraic hyperstructures, especially those from the last fifteen years, to the following subjects: geometry, hypergraphs, binary relations, lattices, fuzzy sets and rough sets, automata, cryptography, codes, median algebras, relation algebras, artificial intelligence and probabilities.

A map $\circ: H \times H \longrightarrow \mathcal{P}^*(H)$ is called a hyperoperation or join operation. A hypergroupoid is a set H with together a (binary) hyperoperation \circ . A hypergroupoid (H, \circ) , which is associative, that is $x \circ (y \circ z) = (x \circ y) \circ z, \forall x, y, z \in H$, is called a semihypergroup (see [2]).

A semihypergroup S is said to have zero element, if there exists a unique element $e \in S$ such that ex = x = xe, for all $x \in S$. Note that we identify the singleton set, $\{x\}$ with x. Also a semihypergroup S is called *commutative*, if xy = yx, for all $x, y \in S$.

In the sequel, by S we mean a semihypergroup, unless otherwise specified. **Definition 1.1.** Let (S, .) be a semihypergroup. A nonempty subset T of S is called a *subsemihypergroup* of S if (T, .) is a semihypergroup

Let S be a semihypergroup and θ be an equivalence relation on S. Naturally we can extend θ to the subsets of S denoted by $\overline{\theta}$ as follows.(see [1], [2])

For nonempty subsets \mathcal{A} and \mathcal{B} of \mathcal{S} . Define

 $\mathcal{A}\overline{\theta}\mathcal{B} \iff \forall a \in \mathcal{A} \ \exists b \in \mathcal{B}, \ a\theta b \ \text{and} \ \forall b \in \mathcal{B} \ \exists a \in \mathcal{A}, \ b\theta a,$

where by $a\theta b$, we mean $(a, b) \in \theta$.

 $^{{\}bf 2000~Mathematics~Subject~Classification:~20N20}.$

 $^{{\}bf keywords\ and\ phrases:}\ semihypergroup,\ subsemihypergroup,\ invertible\ subsemihypergroup,\ regular\ relation.$

An equivalence relation θ on S is said to be regular if for all $a, b, x \in S$ we have

$$a\theta b \Longrightarrow (ax)\overline{\theta}(bx)$$
, and $(xa)\overline{\theta}(bx)$.

2. Regular relations

Definition 2.1. Let S be a semihypergroup. A subsemihypergroup T of S is called *invertible* if for all $x, y \in S$ we have

$$x \in y\mathcal{T} \iff y \in x\mathcal{T} \quad \text{and} \quad x \in \mathcal{T}y \iff y \in \mathcal{T}x.$$

By $\mathcal{T} <_i \mathcal{S}$, we mean \mathcal{T} is an invertible subsemilypergroup of \mathcal{S} .

If S is a semihypergroup, then it is clear that S itself is an invertible subsemihypergroup. Also if S has identity, then $\{e\}$ is an invertible subsemihypergroup. **Definition 2.2**. Let S be a semihypergroup and $\{T_j\}_{j=1}^n$ be a family of sub-

semihypergroups of S, then the product of T_j s is denoted by $\prod_{j=1}^n T_j$ and is

defined by $\prod_{j=1}^n \mathcal{T}_j = \{t \in \mathcal{S} | t \in \prod_{j=1}^n a_j, \exists a_j \in \mathcal{T}_j \}$. It is easy to see that $\prod_{j=1}^n \mathcal{T}_j$ is a subsemihypergroup.

Proposition 2.3. (i) Let S be a commutative semihypergroup and $\{T_j\}_{j=1}^n$

be a family of invertible subsemily pergroups of \mathcal{S} , then $\prod_{j=1}^{n} \mathcal{T}_{j}$ is an invertible subsemily pergroup.

(ii) Let $\{S_j\}_{j=1}^n$ be a family of semihypergroups and $\mathcal{T}_j <_i S_j$ for all $1 \leq j \leq n$. Then $\mathcal{T}_1 \times \mathcal{T}_2 \times ... \times \mathcal{T}_n <_i S_1 \times S_2 \times ... \times S_n$.

Proposition 2.4. Let S_1 and S_2 be two semihypergroups and $f: S_1 \longrightarrow S_2$ be an on-to homomorphism. If \mathcal{T} is an invertible subsemihypergroup of S_1 , then $f(\mathcal{T})$ is an invertible subsemihypergroup of S_2 .

Definition 2.5. Let S be a commutative semihypergroup with identity and T < S. Define the relation λ_T on S as follows:

 $x\lambda_{\mathcal{T}}y$ if there exist invertible subsemilypergroups \mathcal{T}_1 and \mathcal{T}_2 of \mathcal{S} such that $\mathcal{T}_1, \mathcal{T}_2 \subseteq \mathcal{T}$ and $x\mathcal{T}_1 \approx y\mathcal{T}_2$, where by $\mathcal{A} \approx \mathcal{B}$ we mean $\mathcal{A} \cap \mathcal{B} \neq \emptyset$.

Theorem 2.6. Let S be a commutative semihypergroup with identity and T < S. Then λ_T is a regular equivalence relation on S.

Theorem 2.7. Let (S,.) be a commutative semihypergroup with identity and $S/\lambda_{\mathcal{T}} = \{\lambda_{\mathcal{T}}(x) | x \in S\}$ be the equivalence classes of S with respect to $\lambda_{\mathcal{T}}$. Then $(S/\lambda_{\mathcal{T}}, \odot)$ is a commutative semihypergroup with $\lambda_{\mathcal{T}}(e)$ as an identity element, where \odot is defined as follows:

$$\lambda_{\mathcal{T}}(x) \odot \lambda_{\mathcal{T}}(y) = \{\lambda_{\mathcal{T}}(z) | z \in \lambda_{\mathcal{T}}(x) \lambda_{\mathcal{T}}(y)\},\$$

Definition 2.8. Let S be an commutative semihypergroup with identity and T < S. Define the relation ρ_T on S as follows:

 $x\rho_{\mathcal{T}}y$ there exist invertible subsemilypergroups \mathcal{T}_1 and \mathcal{T}_2 of \mathcal{S} such that $\mathcal{T}_1, \mathcal{T}_2 \subseteq I$ and $x\mathcal{T}_1 = y\mathcal{T}_2$.

Theorem 2.9. Let S be a commutative semihypergroup with identity, then $\rho_{\mathcal{T}} = \lambda_{\mathcal{T}}$.

94

Corollary 2.10. Let S be a commutative semihypergroup with identity. Then $\rho_{\mathcal{T}}$ is a regular equivalence relation on semihypergroup S. Also $(S/\rho_{\mathcal{T}}, \overline{\odot})$ is a commutative semihypergroup with identity, where $\overline{\odot}$ is defined as follows:

$$\rho_{\mathcal{T}}(x)\overline{\odot}\rho_{\mathcal{T}}(y) = \{\rho_{\mathcal{T}}(z)|\ z \in xy\},\$$

Note 2.11. It is easy to verify that, if $\mathcal{T}_1 \subseteq \mathcal{T}$ is an invertible subsemilypergroup of \mathcal{S} , then for all $x \in \mathcal{S}$, we have $x\mathcal{T}_1 \subseteq \rho_{\mathcal{T}}(x) = \lambda_{\mathcal{T}}(x)$.

Lemma 2.12. Let S be a commutative semihypergroup with identity and $T_1, T_2 < S$ and $T_1 \subseteq T_2$. Then $\rho_T(x) \in T_2/\rho_T$ if and only if $x \in T_2$.

Theorem 2.13. Let S be a commutative semihypergroup with identity and $\mathcal{T}_1 \subseteq \mathcal{T}_2$. Then $\mathcal{T}_2 < S$ if and only if $\mathcal{T}_2/\rho_{\mathcal{T}_1} < S/\rho_{\mathcal{T}_1}$.

Acknowledgment

This research is partially supported by the "Research Center on Algebraic Hyperstructures and Fuzzy Mathematics, University of Mazandaran, Babolsar, Iran".

References

- [1] P. Corsini, "Prolegomena of hypergroup theory", second edition Aviani editor, (1993).
- [2] P. Corsini, V. Leoreanu, "Applications of hyperstructure theory", Kluwer Academic Publications (2003).
- [3] B. Davvaz, "Some results on congruences on semihypergroups", Bull. Malaysian Math. Sc. Soc. (Second Series) 23(2000) 53-58.
- [4] F. Marty, "Surnue generaliz-ation de la notion de group", 8^{iem} cou Scandinaves Stockholm, (1934), 45-49.
- [5] T. Vougiuklis, "Hyperstructures and their representations", Hardonic Press, Inc. (1994).