Tarbiat Moallem University, 20th Seminar on Algebra, 2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 106-107

VERTEX DECOMPOSABLE AND SHELLABLE COMPLETE T-PARTITE GRAPHS

DARIUSH KIANI AND SEYYEDE MASOOME SEYYEDI

Faculty of Mathematics and Computer Science Amirkabir University of Technology 424, Hafez Ave. Tehran 15914, Iran dkiani@aut.ac.ir seyyedi@aut.ac.ir

ABSTRACT. Let G be a simple undirected graph and let Δ_G be a simplicial complex whose faces correspond to the independent sets of G. we show that complete t-partite graph G is sequentially Cohen-Macaulay if and only if G is shellable. Also we show that complete t-partite graph G is vertex decomposable if and only if α_1 be arbitrary and $\alpha_i = 1$ for all $2 \leq i \leq t$.

1. INTRODUCTION

Let G be a simple undirected graph on the vertex set $V(G) = \{x_1, \dots, x_n\}$. By identifying the vertex v_i with the variable x_i in the polynomial ring $R = K[x_1, \dots, x_n]$ over a field K, we can associate to G a quadratic square- free monomial ideal $I(G) = \langle x_i x_j | \{x_i, x_j\} \in E(G) \rangle$ where E(G) is the edge set of G. The ideal I(G) is called the edge ideal of G. Using the Stanley-Reisner correspondence, we can associate to G the simplicial complex Δ_G , where $I_{\Delta_G} = I(G)$. Notice that the faces of Δ_G are independent sets or stable sets of G. Thus F is a face of Δ_G if and only if there is no edge of G joining any two vertices of F.

We say that a graph G is complete t-partite graph if its vertex set V can be partitioned into disjoint subsets v_1, \dots, v_t such that $|v_i| = \alpha_i$ for all $1 \le i \le t$ and G contains every edge joining v_i and v_j for all $i \ne j$ and $1 \le i, j \le t$.

A simplicial complex Δ is recursively defined to be vertex decomposable if it is either a simplex, or else has some vertex v so that

i) Both $\Delta \setminus v$ and $link^v_\Delta$ are vertex decomposable and

ii)No face of $link_{\Delta}^{v}$ is a facet of $\Delta \setminus v$.

A simplicial complex Δ is called shellable if the facets (maximal faces) of Δ can be ordered F_1, \ldots, F_s such that for all $1 \leq i < j \leq s$, there exists some $v \in F_j \setminus F_i$ and some $l \in \{1, \ldots, j-1\}$ with $F_j \setminus F_l = \{v\}$. We call F_1, \ldots, F_s a shelling of Δ when the facets have been ordered with respect to the definition

²⁰⁰⁰ Mathematics Subject Classification: 13F55, 13D02, 05C38.

keywords and phrases: Sequentially Cohen- Macaulay, Shellable, Vertex decomposable, edge ideal.

of shellable. A graph G is called shellable, if the simplicial complex Δ_G is a shellable simplicial complex.

Let $R = k[x_1, \ldots, x_n]$. A graded *R*-module *M* is called sequentially Cohen-Macaulay (over k) if there exists a finite filtration of graded *R*-modules

$$0 = M_0 \subset M_1 \subset \cdots \subset M_r = M_r$$

such that each M_i/M_{i-1} is Cohen-Macaulay, and the Krull dimensions of the quotients are increasing:

$$\dim (M_1/M_0) < \dim (M_2/M_1) < \dots < \dim (M_r/M_{r-1}).$$

A graph G is said to be (sequentially)Cohen-Macaulay, if the ring $\frac{k[x_1, \dots, x_n]}{I(G)}$ is a (sequentially)Cohen-Macaulay ring. We give a sufficient and necessary condition on a complete t-partite graph to be vertex decomposable. Note that all shellable graphs are sequentially Cohen-Macaulay but the converse isn't true in general.

our main result is to classify all sequentially Cohen-Macaulay complete t-partite graphs. Precisely we show that complete t-partite graph G is sequentially Cohen-Macaulay if and only if G is shellable.

2. Main results

Theorem 2.1. Let G be a complete t-partite graph. G is vertex decomposable if and only if α_1 be arbitrary and $\alpha_i = 1$ for all $2 \le i \le t$.

Theorem 2.2. Let G be a complete t-partite graph. G is shellable if and only if α_1 be arbitrary and $\alpha_i = 1$ for all $2 \le i \le t$.

Corollary 2.3. Let G be a complete t-partite graph. G is shellable if and only if G is vertex decomposable.

3. Alexander Duality

we show the following theorem.

Theorem 3.1. Let G be a complete t-partite graph and Δ_G be independence complex of G. Then Alexander dual of Δ_G is sequentially Cohen-Macaulay.

References

- Christopher A. Francisco and Huy Tai Ha, Whiskers and sequentially Cohen-Macaulay graphs, J. Combin. 115 (2008), 304-316.
- [2] Christopher A. Francisco and Adam Van Tuyl, Sequentially Cohen-Macaulay edge ideals . 135 (2007), 2327–2337.
- [3] Christopher A. Francisco and Adam Van Tuyl, Some families of componentwise linear monomial ideals, J. Nagoya Math. 187 (2007), 115-156.
- [4] Adam Van Tuyl and Rafael H. Villarreal, Shellable graphs and sequentially Cohen-Macaulay bipartite graphs, J. Combin. 115 (2008), 799-814.