Tarbiat Moallem University, 20th Seminar on Algebra, 2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 112-114

EDGE-TRANSITIVE ELEMENTARY ABELIAN REGULAR COVER OF Q_3

MOHSEN LASHANI

Faculty of Mathematics Iran University of Science and Technology Narmak, Tehran 16844, Iran lashani@iust.aci.ir (Joint work with Mehdi Alaeiyan and M.K. Hosseinipoor)

ABSTRACT. A simple undirected graph is said to be semisymmetric if it is regular and edge-transitive but not vertex-transitive. Let $p \geq 11$ be a prime. In this paper, it is proved that, every cubic edge-transitive elementary abelian regular cover of Q_3 is vertex-transitive.

1. INTRODUCTION

In this paper we consider an undirected finite connected graph without loops or multiple edges. For a graph Γ , we denote by $V(\Gamma)$, $E(\Gamma)$ and $Aut(\Gamma)$ its vertex set, edge set and automorphism group, respectively. For $u, v \in V(\Gamma)$, denote by uv the edge incident to u and v in Γ , and by $N_{\Gamma}(u)$ the neighbourhood of u in Γ , that is, the set of vertices adjacent to u in Γ . A graph Γ is called a covering of a graph Γ with projection $p: \widetilde{\Gamma} \to \Gamma$ if there is a surjection $p: V(\widetilde{\Gamma}) \to V(\Gamma)$ such that $p|_{N_{\widetilde{\Gamma}}(\widetilde{v})} : N_{\widetilde{\Gamma}}(\widetilde{v}) \to N_{\Gamma}(v)$ is a bijection for any vertex $v \in V(\Gamma)$ and $\tilde{v} \in p^{-1}(v)$. Let N be a subgroup of Aut(Γ) such that N is intransitive on $V(\Gamma)$. The quotient graph Γ/N induced by N is defined as the graph such that the set Σ of N-orbits in $V(\Gamma)$ is the vertex set of Γ/N and $B, C \in \Sigma$ are adjacent if and only if there exist $u \in B$ and $v \in C$ such that $\{u, v\} \in E(\Gamma)$. A covering $\widetilde{\Gamma}$ of Γ with a projection p is said to be regular (or K-covering) if there is a semiregular subgroup K of the automorphism group Aut($\overline{\Gamma}$) such that graph Γ is isomorphic to the quotient graph $\overline{\Gamma}/K$, say by h, and the quotient map $\widetilde{\Gamma} \to \widetilde{\Gamma}/K$ is the composition ph of p and h (for the purpose of this paper, all functions are composed from left to right). If K is cyclic or elementary abelian then Γ is called a *cyclic* or an *elementary abelian* covering of Γ , and if Γ is connected K becomes the covering transformation group.

If a subgroup G of Aut(Γ) acts transitively on $V(\Gamma)$, $E(\Gamma)$ and $A(\Gamma)$, we say that Γ is *G*-vertex-transitive, *G*-edge-transitive and *G*-arc-transitive, respectively. In the special case, when $G = \operatorname{Aut}(\Gamma)$ we say that Γ is vertex-transitive,

²⁰⁰⁰ Mathematics Subject Classification: 05C25, 20B25.

keywords and phrases: semisymmetric graphs, symmetric graphs, regular coverings.

edge-transitive and arc-transitive (or *symmetric*), respectively. A regular *G*-edge-transitive but not *G*-vertex-transitive graph will be referred to as a *G*-semisymmetric graph. In particular, if $G = \operatorname{Aut}(\Gamma)$, then the graph Γ is said to be semisymmetric.

The study of semisymmetric graphs was initiated by Folkman [2]. It is given a classification of semisymmetric graphs of order 2pq in [1], where p and q are distinct primes.

Let Γ be a graph and K be a finite group. By a^{-1} we mean the reverse arc to an arc a. A voltage assignment (or, K-voltage assignment) of Γ is a function $\phi : A(\Gamma) \to K$ with the property that $\phi(a^{-1}) = \phi(a)^{-1}$ for each arc $a \in A(\Gamma)$. The values of ϕ are called voltages, and K is the voltage group. The graph $\Gamma \times_{\phi} K$ derived from a voltage assignment $\phi : A(\Gamma) \to K$ has vertex set $V(\Gamma) \times K$ and edge set $E(\Gamma) \times K$, so that an edge (e, g) of $\Gamma \times K$ joins a vertex (u, g) to $(v, \phi(a)g)$ for $a = (u, v) \in A(\Gamma)$ and $g \in K$, where e = uv.

Clearly, the derived graph $\Gamma \times_{\phi} K$ is a covering of Γ with the first coordinate projection $p: \Gamma \times_{\phi} K \to \Gamma$, which is called the *natural projection*. By defining $(u, g')^g = (u, g'g)$ for any $g \in K$ and $(u, g') \in V(\Gamma \times_{\phi} K)$, K becomes a subgroup of $\operatorname{Aut}(\Gamma \times_{\phi} K)$ which acts semiregularly on $V(\Gamma \times_{\phi} K)$. Therefore, $\Gamma \times_{\phi} K$ can be viewed as a *K*-covering. For each $u \in V(\Gamma)$ and $uv \in E(\Gamma)$, the vertex set $\{(u,g) \mid g \in K\}$ is the fibre of u and the edge set $\{(u,g)(v,\phi(a)g) \mid g \in K\}$ is the fibre of uv, where a = (u,v). Conversely, each regular covering $\widetilde{\Gamma}$ of Γ with a covering transformation group K can be derived from a K-voltage assignment. Given a spanning tree T of the graph Γ , a voltage assignment ϕ is said to be T-reduced if the voltages on the tree arcs are the identity. Gross and Tucker [5] showed that every regular covering $\widetilde{\Gamma}$ of a graph Γ can be derived from a T-reduced voltage assignment ϕ with respect to an arbitrary fixed spanning tree T of Γ . It is clear that if ϕ is reduced, the derived graph $\Gamma \times_{\phi} K$ is connected if and only if the voltages on the cotree arcs generate the voltages group K.

Let Γ be a K-covering of Γ with a projection p. If $\alpha \in \operatorname{Aut}(\Gamma)$ and $\tilde{\alpha} \in \operatorname{Aut}(\Gamma)$ satisfy $\tilde{\alpha}p = p\alpha$, we call $\tilde{\alpha}$ a *lift* of α , and α the *projection* of $\tilde{\alpha}$. Concepts such as a lift of a subgroup of $\operatorname{Aut}(\Gamma)$ and the projection of a subgroup of $\tilde{\Gamma}$ are self-explanatory. The lifts and the projections of such subgroups are of course subgroups in $\operatorname{Aut}(\tilde{\Gamma})$ and $\operatorname{Aut}(\Gamma)$ respectively. In particular, if the covering graph $\tilde{\Gamma}$ is connected, then the covering transformation group K is the lift of the trivial group, that is $K = \{\tilde{\alpha} \in \operatorname{Aut}(\tilde{\Gamma}): p = \tilde{\alpha}p\}$. Clearly, if $\tilde{\alpha}$ is a lift of α , then $K\tilde{\alpha}$ are all the lifts of α .

2. Main results

Lemma 2.1. Suppose that Γ is a connected semisymmetric cubic graph of order $8p^n$. Then Γ is a connected N-regular covering of Q_3 such that the subgroup of $Aut(Q_3)$ generated by α and β lifts, where $|N| = p^n$

Lemma 2.2. Let $N \cong \mathbb{Z}_p^n$ and suppose that $\Gamma = Q_3 \times_{\phi} \mathbb{Z}_p^n$ is a connected \mathbb{Z}_p^n -regular covering of Q_3 . If the subgroup of $Aut(Q_3)$ generated by α and β can be lifted then Γ is symmetric.

114

MOHSEN LASHANI

Theorem 2.3. Let $p \ge 11$ be a prime. Then every cubic edge-transitive elementary abelian regular cover of Q_3 is vertex-transitive.

References

- S. F. Du and M. Y. Xu, A classification of semisymmetric graphs of order 2pq, Com. in Algebra, 28(6) (2000), 2685-2715.
- [2] J. Folkman, Regular line-symmetric graphs, J. Combin. Theory, **3** (1967), 215-232.
- [3] A. Malnič, D. Marušič and C. Q. Wang, Cubic edge-transitive graphs of order $2p^3$, Discrete Math., **274** (2004), 187-198.
- [4] W. T. Tutte, Connectivity in graphs, Toronto University Press, 1966.
- [5] J.L. Gross, T.W. Tucker, Generating all graph covering by permutation voltages assignment, Discrete Math. 18 (1977) 273-283.