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ABSTRACT. In this paper we find the order and structure of Aut.(G) for
G = K x H by imposing some conditions on H and K. As a result, we
show that if M is a non-normal maximal subgroup of a solvable group G,
such that all central automorphisms of G fix Coreg (M) pointwise, then
Autc(G), is meta-abelian.

1. INTRODUCTION

An automorphism o of a group G is central if o commutes with every auto-
morphism in Inn(G), the group of inner automorphisms of G, or equivalently,
if g7'o(g) lies in the center Z(G) of G, for all g in G. The central automor-
phisms fix the commutator subgroup G’ of G pointwise, and form a normal
subgroup, denoted by Aut.(G), of the full automorphism group Aut(G). The
group of central automorphisms of a finite group G is of great importance in
the investigation of Aut(G), and has been studied by several authors (see, for
example, [1-6]).

In [1] Adney and Yen has shown that if G is a finite purely non-abelian
group then |[Aut.(G)| = [Hom(G/G’, Z(@))|. Suppose G = K x H where K is
purely non-abelian and H an abelian subgroup of G. In [5] Jamali and Jafari
introduced some subgroups for Aut.(G) to find order and structure of Aut.(G).

In this paper we find the order and structure of Aut.(G) for G = K x H
by imposing some conditions on H and K. As a result, we show that if M is
a non-normal maximal subgroup of a solvable group G, such that all central
automorphisms of G fix Coreg(M) pointwise, then Aut.(G), is meta-abelian.

In this talk, G is a finite group, 7, and 7, are the projection maps from
G into H and K respectively and o,, o, are restriction of ¢ on H and K
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respectively. Also we set:
R={r,0,|0 € Aut.(G)} S ={m, 0|0 € Aut.(G)}
T={r,o,l0 € Aut.(G)} U ={rn,0,.|o € Aut.(G)}

2. MAIN RESULTS

Theorem 2.1. Let G = K x H be a semidirect product, such that (|H|,|K]|) =
1. then Aut.(G) = R x S. Furthermore, if Z(H) acts trivially on K then
Aut.(G) =2 Aut.(H) x S. In particular if G = K x H, then Aut.(G) =
Aut.(H) x Aut.(K).

Corollary 2.2. Let G be a solvable group. If M is a non-normal mazimal
subgroup of index p' such that p t |%| and (|M/C|,|C|) = 1, where C =
Coreg(M) then we can write G = K xH, for which (|K|,|H|) =1 and H < M.
Hence Aut.(G) = R x S.

Theorem 2.3. Let % = % X % be a semidirect product and the central

automorphisms fix the subgroup N of G pointwise and (\%\, |%|) = 1. then
Aut.(G)=ZRx S.

Theorem 2.4. Let G = K x H be a semidirect product, such that Cx(H) = 1.
Then Aut.(G) 2 Rx U.

Theorem 2.5. Let % = % X % be a semidirect product and the central au-

tomorphisms fix the subgroup N of G pointwise and Cx/n(H/N) = 1. then
Aut(G) 2 Rx U’ where U' = {f, | fo € Hom(K,Z(G) N H),o € Aut.(G)}.

Corollary 2.6. Let G be a solvable group with non-normal maximal subgroup
M. If all central automorphisms fiz Coreg(M) pointwise, then Aut.(G) = R
and so is abelian.

Theorem 2.7. Let G = K x H be a semidirect product, where K is purely
non-abelian and Z(H) acts trivially on K. then Aut.(G) = RTUS.
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