Tarbiat Moallem University, 20th Seminar on Algebra,
2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 151-154

A NOTE ON QUOTIENT HYPER K-ALGEBRAS

M.A. NASR-AZADANI

P. O. Box 18151-159, Tehran Iran nasr@shahed.ac.ir (Joint work with M. M. Zahedi)

ABSTRACT. In this manuscript, we show that if $H \stackrel{\text{H}}{=} A \oplus B$, then H/A is isomorphic to B, where H is a hyper K-algebra, A and B are closed sets.

1. INTRODUCTION

The study of BCK-algebra was initiated by Imai and Iséki in 1966. Borzooei, Zahedi and et.al. in 2000 introduced and studied the concept of hyper BCKalgebra and K-algebra.

Definition 1.1. [2] Let H be a set containing a constant "0" and "o" be a hyperoperation (i.e. a map $\circ : H \times H \to \mathcal{P}^*(H)$) on H. Then H is called a hyper K-algebra (hyper BCK-algebra) if it satisfies K1-K5(HK1-HK4).

K1: $(x \circ z) \circ (y \circ z) < x \circ y$,	HK1: $(x \circ z) \circ (y \circ z) \ll x \circ y$,
K2: $(x \circ y) \circ z = (x \circ z) \circ y$,	HK2: $(x \circ y) \circ z = (x \circ z) \circ y$,
K3: $x < x$,	HK3: $x \circ H \ll x$,
K4: $x < y$, $y < x$ then $x = y$,	HK4: $x \ll y, y \ll x$ then $x = y$,
K5: $0 < x$,	

for all $x, y, z \in H$, where $x < y(x \ll y)$ means $0 \in x \circ y$. Moreover for any $A, B \subseteq H, A < B$ (resp. $A \ll B$) if there exist $a \in A$ and $b \in B$ such that a < b (resp. if for all $a \in A$, there exists $b \in B$ such that $a \ll b$). If $A, B \subseteq H$, then $A \circ B = \bigcup_{a \in A, b \in B} a \circ b$ of H.

Definition 1.2. [2, 5] Let *I* be a non-empty subset of *H* such that $0 \in I$. Then *I* is said to be a *hyper K-ideal* of *H* if $x \circ y < I$ and $y \in I$ implies that $x \in I$ for all $x, y \in H$ and it is *closed* if for every $x, y \in H$, x < y and $y \in I$ imply that $x \in A$.

Theorem 1.3. [4] Any hyper K-ideal of hyper K-algebra H is a closed set.

2000 Mathematics Subject Classification: 06F35, 03G25.

keywords and phrases: S-absorbing hyper K-ideal,(P)-Decomposition, Quotient hyper K-algebras.

M.A. NASR-AZADANI

Definition 1.4. Let *I* be a subset of *H* and $\phi \neq S \subseteq H$. Then we say that *I* is an *S*-absorbing, if from $x \in I$ and $y \in S$, it follows $x \circ y \subseteq I$.

Theorem 1.5. [4] Let H be a hyper BCK-algebra and I be a hyper BCK-ideal of hyper K-algebra H. Then I is an H-absorbing.

Definition 1.6. A hyper K-algebra H is called (P)-decomposable if there exists a non-trivial family $\{A_i\}_{i\in\Lambda}$ of subsets of H with the property P such that: (i) $H \neq A_i$, (ii) $H = \bigcup_{i\in\Lambda}A_i$, (iii) $A_i \cap A_j = \{0\}, i \neq j$. for all $i \in \Lambda$, In this case, we write $H = \bigoplus_{i\in\Lambda}A_i(P)$ and say that $\{A_i\}_{i\in\Lambda}$ is a (P)-decomposition

for *H*. If each A_i , $i \in \Lambda$, is an S-absorbing set we write $H \stackrel{s}{=} \bigoplus_{i \in \Lambda} A_i(\mathbf{P})$.

Definition 1.7. [4] Let ~ be an equivalence relation on H and $A, B \subseteq H$. Then (i) $A \sim B$ if and only if there exist $a \in A$ and $b \in B$ such that $a \sim b$. (ii) $A \approx B$ if and only if for all $a \in A$, there exists $b \in B$ such that $a \sim b$, and for all $b \in B$ there exists $a \in A$ such that $a \sim b$. (iii) ~ is called regular if $a \sim b$ implies that $a \circ c \approx b \circ c$ and $c \circ a \approx c \circ b$, for any $a, b, c \in H$. (iv) ~ is called a congruence relation on H if $a \sim b$ and $x \sim y$ then $a \circ x \approx b \circ y$. (v) ~ is called good, if $a \circ b \sim \{0\}$ and $b \circ a \sim \{0\}$ implies $a \sim b$ for any $a, b, c \in H$.

Note: Henceforth, H is a hyper K-algebra and we call an equivalence, regular and good relation by " ERG relation", the equivalence class x by C_x and $I = C_0$.

Proposition 1.8. [4] If \sim is an ERG relation on H, then $(H/\sim, *, C_0)$ is a hyper K-algebra, where $C_x * C_y = \{C_t | t \in x \circ y\}$

Theorem 1.9. [4] (First isomorphism theorem)Let $f : H_1 \to H_2$ be a homomorphism, i.e. f is a map such that, f(0) = 0 and $f(x \circ y) = f(x) \circ f(y)$, for all $x, y \in H_1$. Then $H_1/Kerf \cong Im(f)$, where $Kerf = \{x \in H_1 : f(x) = 0\}$.

2. Main results

In this section we investigate the characteristics of an ERG relation, \sim , on a hyper K-algebra. We show that any such relation is as form: $x \sim y \Rightarrow x \circ y < I$ and $y \circ x < I$, where $I = C_0$. Moreover if $H \stackrel{\text{H}}{=} \bigoplus_{i \in \Lambda} A_i$ (closed), then this relation change into $x, y \in I$ or $x = y \notin I$ and under some conditions this relation is unique.

Theorem 2.1. (i) Let ~ be an ERG relation on H. Then $x \sim y$ if and only if $x \circ y < I$ and $y \circ x < I$. (ii) Let $H \stackrel{\text{H}}{=} A \oplus B$ (closed set). Then $a \circ b < A$ and $b \circ a < A$ if and only if $a, b \in A$ or $a = b \notin A$.

Theorem 2.2. [3] Let $H \stackrel{\text{H}}{=} A \oplus B$ (closed set), and $u \sim v$ if and only if $u, v \in A$ or $u = v \notin A$. Then (i) \sim is an equivalence relation on H such that $C_0 = A$

152

and $|H/ \sim | = |B|$. (ii) \sim is a good relation. (iii) \sim is a congruence(regular) relation if and only if $b \circ x = b \circ y$ where $x, y \in A$ and $b \notin A$. (iv) if $b \circ x = b \circ y$ where $x, y \in A$, and $b \notin A$, then \sim is the only ERG relation on H such that $C_0 = A$, and $H/A \cong B$.

Consider the following hyper K-algebra:

0	0	1	2	3	4	5
0	{0}	{0}	{0}	{0}	{0}	{0}
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$	$\{1\}$	$\{0\}$
2	$\{2\}$	$\{2\}$	$\{0,1,2\}$	$\{2\}$	$\{2\}$	$\{0\}$
3	${3,4}$	$\{3,4\}$	${3,4}$	$\{0,3,4\}$	$\{0,4\}$	$\{3\}$
4	{4}	$\{4\}$	$\{4\}$	$\{4\}$	$\{0,4\}$	$\{4\}$
5	{5}	$\{5\}$	$\{5\}$	$\{5\}$	$\{5\}$	$\{0,5\}.$

It is clear that $H = A \oplus B$ (hyper K-ideal) where $A = \{0, 1, 2\}$ and $B = \{0, 3, 4, 5\}$, are H-absorbing and $b \circ x = b \circ y$ for all $b \notin A$ and $x, y \in A$. Let $\sim = \{(0,0), (1,0), (0,1), (1,1), (0,2), (2,0), (1,2), (2,1), (2,2), (3,3), (4,4), (5,5)\}$. Then by Theorem 2.2, \sim is an ERG relation on H. Moreover $(H/\sim, C_0, *)$, is as follows:

*	C_0	C_3	C_4	C_5
C_0	$\{C_0\}$	$\{C_0\}$	$\{C_0\}$	$\{C_0\}$
C_3	$\{C_3, C_4\}$	$\{C_0, C_3, C_4\}$	$\{C_0, C_4\}$	$\{C_3\}$
C_4	$\{C_4\}$	$\{C_4\}$	$\{C_0, C_4\}$	$\{C_4\}$
C_4	$\{C_5\}$	$\{C_5\}$	$\{C_5\}$	$\{C_0, C_5\}.$

If $H = A \oplus B$ (hyper K-ideal) and at least one of A or B are not H-absorbing, then there is an ERG relation different from the relation given in Theorem 2.2, on H. To this end, consider the following hyper K-algebra on $H = \{0, 1, 2, 3\}$ and ERG relation $\chi = \{(0,0), (0,1), (1,0), (1,1), (2,2), (3,3), (2,3), (3,2)\}$ On it. Then $H = A \oplus B$, where $A = \{0, 1\}$ and $B = \{0, 2, 3\}$. Moreover B is not H-absorbing. Also the cayley table of $H/A = \{C_0, C_2\}$ is as follows:

0	0	1	2	3			
0	{0}	{0}	{0}	{0}	*	C_0	C_2
1	{1}	$\{0,1\}$	$\{1\}$	$\{1\}$	C_0	$\{C_0\}$	$\{C_0\}$
2	{2}	$\{2,3\}$	$\{0,2\}$	$\{1,2\}$	C_2	$\{C_2\}$	$\{C_0, C_2\}.$
3	{3}	$\{3\}$	$\{0,\!3\}$	$\{0,2,3\}.$			

Now we provide an example to show that Theorem 4.1 and Corollary 4.3 of [1], are not true in general.

Remark 2.3. Theorem 4.1. and Corollary 4.3 of [1], are as follows: "Theorem 4.1: Let H(hyper BCK-algebra) be decomposable with decomposition $H = A \oplus B$. Then there exist a regular(i.e., it is a good relation according to

M.A. NASR-AZADANI

the our definition) congruence relation Θ on H and a hyper BCK-algebra X of order 2 such that $H/\Theta \cong X^{"}$.

"Corollary 4.3: Let H be decomposable with decomposition $H = A \oplus B$ and $b \circ x = b \circ y$ for all $b \in B$ and $x, y \in A$. Then |B| = 2."

In the proof of Theorem 4.1 of [1], they have claimed that the relation $x\Theta y \iff x, y \in A \text{ or } x, y \in B - \{0\}$ is a congruence relation and also in Corollary 4.3 they have claimed that |B| = 2, but now, we show that these are not true in general. To see this, consider the following example.

Example 2.4. Consider the following hyper BCK-algebra:

0	0	1	2	3
0	{0}	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{1\}$
2	$\{2\}$	$\{2\}$	$\{0,2\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0,3\}$

It is easy to check $H = \{0, 1\} \oplus \{0, 2, 3\}$, where $A = \{0, 1\}$ and $B = \{0, 2, 3\}$. By definition of Θ , we have $2\Theta 2$, $3\Theta 2$ but $2 \circ 3 = \{2\} \not\approx 2 \circ 2 = \{0, 2\}$, since $\{0, 2\} \not\subset A$ and $\{0, 2\} \not\subset B - \{0\}$, i.e., Θ is not a congruence relation. Also we see that $|B| \neq 2$.

Since any hyper BCK-ideal is H-absorbing, so if $H = A \oplus B$ (hyper BCK-ideal), then we have $H \stackrel{\text{H}}{=} A \oplus B$ (hyper BCK-ideal). Therefore by considering Theorem 2.2, the only ERG relation on H with $C_0 = A$ is exactly as relation: $u, v \in A$ or $u = v \notin A$, hence $x \Theta y \iff x, y \in A$ or $x, y \in B - \{0\}$ is not a congruence relation. The correct version of Corollary 4.3. of [1] is as follows.

Theorem 2.5. Let H be a BCK-algebra and $H = A \oplus B$ (hyper BCK-ideal). Then $H/A \cong B$.

References

- R. A. Borzooei and H. Harizavi. On decomposable BCK-algebras, Quasigroups and Related Systems, (13):193–202, 2005.
- [2] R. A. Borzooei, A. Hasankhani, M. M. Zahedi, and Y.B. Jun. On hyper K-algebras, Mathematica Japonicae, 52(1):113–121, 2000.
- [3] M. A. Nasr-Azadani and M. M. Zahedi. ERG relation on hyper K-algebras, Scientiae Mathematicae Japonicae, pages 639–647, 2007.
- [4] A. Borumand Saeid and M. M. Zahedi. Quotient hyper K-algebras, Southeast Asian Bulletin of Mathematics, (30):931–942, 2006.
- [5] M. M. Zahedi, R. A. Borzooei, Y. B. Jun, and A. Hasankhani. Some results on hyper K-algebra, Scientiae Mathematicae, 3(1):53–59, 2000.

154