Tarbiat Moallem University, 20th Seminar on Algebra, 2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 159-161

A GENERALIZATION OF *h*-DIVISIBLE MODULES

REZA NIKANDISH

Faculty of Mathematics K. N. Toosi University of Technology Tehran, Iran r_nikandish@sina.kntu.ac.ir (Joint work with Mohammad. J. Nikmehr)

ABSTRACT. In this paper the notion of hw-divisible modules as a generalization of h-divisible modules is defined. We show that some of the most important properties of h-divisible modules are hold for hw-divisible modules.

1. INTRODUCTION

In this talk, R will denote a commutative domain with identity and $Q \neq R$ its field of quotients. The *R*-module $\frac{Q}{R}$ will be denoted by *K*. Matlis in [5] introduced the notion of h-divisible modules. Recall that an R-module is said to be h-divisible if it is a homomorphic image of an injective R-module. Lee in [4] defined the notion of weak-injective modules. An R-module M is called weak-injective if $Ext_R^1(N, M) = 0$ for all *R*-modules N of weak dimension \leq 1. He proved that the class of weak-injectives lies strictly between the classes of h-divisible and injective R-modules. For their main properties we refer to [3] and [4]. We say that an *R*-module *D* is *hw-divisible* if it is an epic image of a weak-injective R-module. Note that hw-divisible R-modules are always divisible, but not injective in general. In this paper, the definition and some general results of hw-divisible modules are given. Also, we study the relationship between hw-divisible modules and some of various generalizations of injective R-modules. Moreover, some results related to h-divisible modules are extended to hw-divisible modules. In particular, it is shown that an Rmodule M satisfies $Ext^1_R(M, D) = 0$ for all hw-divisible R-modules D if and only if p.d(M) < 1.

Throughout this paper the symbol of D(R) stands for the global dimension. Moreover, i.d(M), p.d(M) and w.dh(M) denote the injective, projective and weak dimension of M, respectively. The character module $Hom_{\mathbb{Z}}(M, \mathbb{Z})$ of an R-module M will be denoted by M^b .

²⁰⁰⁰ Mathematics Subject Classification: 13C11; 13G05.

keywords and phrases: h-divisible modules, hw-divisible modules, weak injective modules.

REZA NIKANDISH

2. Main results

Definition 2.1. An *R*-module *D* is called hw-divisible if it is an epic image of a weak-injective *R*-module.

Remark 2.2. It is easy to check that the implications injective \Rightarrow weakinjective \Rightarrow h-divisible \Rightarrow hw-divisible \Rightarrow divisible hold.

Theorem 2.3. Let R be a Matlis domain and D be an R-module. Then the following statements are equivalent.

(a) $Ext^{1}_{R}(K,D) = 0;$

(b) Every R-homomorphism from R in to D can be extended to an R-homomorphism from Q into D;

(c) D is a homomorphic image of a weak-injective R-module.

Corollary 2.4. An *R*-module *D* is hw-divisible whenever $Ext_B^1(K, D) = 0$.

Lemma 2.5. For a domain R, the following are equivalent.

(a) R is a Dedekind domain;

(b) All hw-divisible R-modules are injective;

(c) All divisible *R*-modules are injective.

Lemma 2.6. (a) An *R*-module *M* satisfies $Ext_R^1(M, D) = 0$ for all hw-divisible *R*-modules *D* if and only if $p.d(M) \le 1$;

(b) For any hw-divisible R-module D, $i.d(D) + 1 \le D(R)$.

Proof. (a) From the exact sequence $0 \to H \to G \to D \to 0$ where G is a weak-injective R-module, we have $Ext_R^1(M,D) \cong Ext_R^2(M,H)$. Here the second Ext is zero whenever $p.d(M) \leq 1$. Conversely, let M have the indicated property. Given any R-module N, consider the exact sequence $0 \to N \to E \to$ $D \to 0$ where E denotes the injective hull of N. As D is hw-divisible, we have $0 = Ext_R^1(M,D) \to Ext_R^2(M,N) \to Ext_R^2(M,E) = 0$ whence $p.d(M) \leq 1$ is evident.

(b) follows from (a) by an obvious dimension shifting argument. \Box

Recall that an *R*-submodule *N* of *M* is called pure in *M* if, for all (finitely presented) *R*-modules *F*, the map $F \otimes_R N \to F \otimes_R M$ induced by the inclusion map $N \to M$ is injective. An exact sequence $0 \to N \xrightarrow{\varphi} M \to L \to 0$ is called a pure-exact sequence if Im φ is pure in *M*. An *R*-module *M* is called pure-injective if it has the injective property relative to all pure-exact sequences.

Lemma 2.7. For a pure-injective *R*-module *D*, the following are equivalent. (a) *D* is divisible;

- (b) D is hw-divisible;
- (c) D is weak-injective.

Proof. We have only to prove (a) \Rightarrow (c). Let D be a divisible R-module. Then D^b is torsion-free and hence D^{bb} is weak-injective by [4, Lemma 3.1]. The pure-imbedding $D \rightarrow D^{bb}$ together with the hypothesis imply that D is a summand of D^{bb} . Hence D is weak-injective. \Box

Corollary 2.8. An *R*-module *D* is hw-divisible if and only if $Tor_1^R(M, D^b) = 0$, for all *R*-modules *M* of weak dimension ≤ 1 .

160

Proof. \Leftarrow See Lemma 2.7.

 \Rightarrow Let *D* be an *hw*-divisible *R*-module. Then D^b is torsion-free and hence D^{bb} is weak-injective and the result can be found by the isomorphism

$$0 = Ext_R^1(N, Hom_R(D^b, \frac{\mathbb{Q}}{\mathbb{Z}})) \cong Hom_{\mathbb{Z}}(Tor_1^R(N, D^b), \frac{\mathbb{Q}}{\mathbb{Z}}).$$

Lemma 2.9. For a domain R, the following are equivalent.

(a) All hw-divisible R-modules are pure-injective;

(b) Every hw-divisible module is a summand of A^b for some torsion-free module A.

Recall that an *R*-module *M* is called *FP-injective*(or *absolutely pure*) if $Ext_{R}^{1}(N, M) = 0$ for all finitely presented *R*-modules *N*.

Proposition 2.10. For a domain R, the following are equivalent.

(a) R is a prüfer domain;

(b) All Divisible R-modules are FP-injective;

(c) All hw-divisible R-modules are FP-injective.

Proof. (a) \Rightarrow (b) is evident as divisible submodules are relatively divisible, and hence pure in the prüfer case.

(b) \Rightarrow (a) is trivial.

(c) \Rightarrow (a) Let A be any R-module and B its injective hull. For a finitely presented R-module F, the exact sequence $0 \to A \to B \to C \to 0$ induces the exact sequence $0 = Ext_R^1(F,C) \to Ext_R^2(F,A) \to Ext_R^2(F,B) = 0$, where the first Ext vanishes by assumption. Hence $Ext_R^2(F,A) = 0$. Since A was arbitrary, we conclude $pd(F) \leq 1$. If this inequality holds for all finitely presented R-modules F, then for every finitely generated ideal I of R, $\frac{R}{I}$ has projective dimension ≤ 1 , hence I is projective; whence R must be a prüfer domain. \Box

Corollary 2.11. For a domain R, the following are equivalent.

- (a) R is a prüfer domain;
- (b) All hw-divisible R-modules are FP-injective;
- (c) All torsion-free R-modules are flat.

Corollary 2.12. For a domain R, the following are equivalent:

- (a) Every R-module of weak dimension ≤ 1 has projective dimension ≤ 1 ;
- (b) All hw-divisible R-modules are weak-injective;
- (c) All divisible *R*-modules are weak-injective;
- (d) Epic images of weak-injective R-modules are weak-injective.

References

- E. Fuchs and L. Scale, A Modules over Non-Noetherian domains, Math surveys and Monographs 84, Providence R. I.: Amer. Math. Society., 2001.
- [2] S. B. Lee divisible modules, Comm. Alg., 31 (2003), 513-525.
- [3] S. B. Lee A note on the Matlis category equivalence, J. Alg., 299 (2006), 854-862.
- [4] S. B. Lee Weak-injective modules, Comm. Alg., **34** (2006), 361-370.
- [5] E. Matlis Cotorsion modules, Mem. Amer. Math. Soc., 49(1964).