Tarbiat Moallem University, 20th Seminar on Algebra, 2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 173-175

CONJUGACY ASSOCIATION SCHEMES

A. RAHNAMAI BARGHI

Department of Mathematics, Faculty of Science K. N. Toosi University of Technology P.O. Box: 16315-1618, Tehran, Iran. rahnama@kntu.ac.ir

ABSTRACT. For a given finite group G we construct a transitive permutation group Γ_G whose related association scheme $\operatorname{Inv}(\Gamma_G)$ is commutative. We investigate some relationship between the group theoretical properties of G and the combinatorial theoretical properties of $\operatorname{Inv}(\Gamma_G)$. Furthermore, the character table of the association scheme $\operatorname{Inv}(\Gamma_G)$ is computed.

1. INTRODUCTION

Through this talk G is a finite group and Inn(G) is the inner automorphism group of G. Let $\Gamma = G \rtimes \text{Inn}(G)$ be semidirect product of G by Inn(G). Hence Γ is a group which its multiplication operation defined by

$$(x,\varphi)(x',\varphi') = (xx'^{\varphi^{-1}},\varphi\varphi'), \ \forall x,x' \in G, \ \varphi,\varphi' \in \text{Inn}(G)$$

Define the action of Γ on G by $g^{(x,\varphi)} = (gx)^{\varphi}$ for all $g \in G$ and $(x,\varphi) \in \Gamma$. It is easy to see that this action gives us a faithful permutation representation on G. Define the image of Γ under the permutation representation by Γ_G . Obviously, $\Gamma_G \leq \text{Sym}(G)$ is transitive and $G_{right} \leq \Gamma_G$, where $G_{right} = \{g_{right} : x \mapsto xg\}$, by identifying $g_{right} \sim (g, id)$. Let $\Gamma_e := \{(e, \varphi) : \varphi \in \text{Inn}(G)\}$. So Γ_e is a subgroup of Γ_G which is isomorphic to Inn(G). Moreover, the orbit of Γ_e containing x is equal to the conjugacy of x in G, i.e. $x^{\Gamma_e} = cl(x)$.

Let R be an arbitrary basis relation in $\text{Inv}(\Gamma_G)$. Since Γ_G is transitive, for each $(x, y) \in R$ there is $y' \in G$ such that $(e, y') \in R$. It follows that $R = \{(g, yg) : g \in G, y \in cl(x_0)\}$ for some $x_0 \in G$. But since $(e, x_0) \in R$ it forces that $R = (e, x_0)^{\Gamma_G}$. In fact, we have

(1)

$$(e, x_0)^{\Gamma_G} = \bigcup \{ (e, x_0)^{(g, \varphi_t)} : t, g \in G \}$$

$$= \bigcup \{ (g^t, (x_0 g)^t) : t, g \in G \}$$

$$= \bigcup_{t \in G} (R_{x_0^{-1}})^{\varphi_t}$$

$$= \bigcup_{g \in G} R_{(x_0^{-1})^g}$$

2000 Mathematics Subject Classification: 20C15, 05E30. keywords and phrases: Association scheme, character.

174

A. RAHNAMAI BARGHI

where $R_{x_0} = \{(g, x_0^{-1}g) : g \in G\}$. Therefore, the adjacency matrix A(R) of R by straightforward calculation is equal to $\sum_{g \in cl(x_0)} P_{(g^{-1})_{left}}$, where $x^{g_{left}} =$

 $g^{-1}x$. This implies that the adjacency algebra $W(\operatorname{Inv}(\Gamma_G))$ is isomorphic to $Z(\mathbb{C}[G])$ and so $\operatorname{Inv}(\Gamma_G)$ is commutative. Thus the permutation character π of the group Γ_G is multiplicity free.

As we saw in the above, the basis relations of the association scheme $\text{Inv}(\Gamma_G)$ corresponding to the conjugacy classes of the group G, see [1, Example 1.2]. For this reason $\text{Inv}(\Gamma_G)$ is called conjugacy scheme. We refer the reader to [1] and [2] for preliminaries about association schemes.

2. Main results

Theorem 2.1. The group Γ_G is nilpotent if and only if the conjugacy scheme $\text{Inv}(\Gamma_G)$ is nilpotent.

Lemma 2.2. G is a nilpotent group if and only if Γ_G is a nilpotent group.

Now from Theorem 2.1 and Lemma 2.2 we get the following corollary:

Corollary 2.3. *G* is a nilpotent group if and only if the conjugacy scheme $Inv(\Gamma_G)$ is nilpotent.

3. Character table of the conjugacy scheme

In this section we calculate characters of the association scheme $Inv(\Gamma_G)$.

Let G be a finite group and let $g_0 = e, g_1, \ldots, g_d$ be representatives of the conjugacy classes $C_0 = \{e\}, C_1, \ldots, C_d$ of G respectively, with corresponding class sums $\mathcal{C}_0, \mathcal{C}_1, \ldots, \mathcal{C}_d$. It is well known that $\mathcal{C}_0, \mathcal{C}_1, \ldots, \mathcal{C}_d$ form a basis of the center of the group algebra $Z(\mathbb{C}[G])$. For $i, j, k \in I = \{0, 1, \ldots, d\}$ and $g \in C_k$, the following number

$$a_{ijk} = |\{(x, y) \in G \times G : x \in C_i, y \in C_j, xy = g\}|$$

is independent of the choice of g and

(2)
$$C_i C_j = \sum_{k=0}^a a_{ijk} C_d$$

If $\chi \in \operatorname{Irr}(G)$ and T is a representation affording χ , then for any $z \in Z(\mathbb{C}[G])$ we have $T(z) = \epsilon I$ for some $\epsilon \in \mathbb{C}$. Since T is an algebra homomorphism and the class sums $\mathcal{C}_0, \mathcal{C}_1, \ldots, \mathcal{C}_d$ form a basis for the center of the group algebra $\mathbb{C}[G]$, one can define an algebra homomorphism $\omega_{\chi} : Z(\mathbb{C}[G]) \to \mathbb{C}$ depending on χ which maps $z \in Z(\mathbb{C}[G])$ to ϵ . Calculation of traces in the equation $T(\mathcal{C}_i) = \omega_{\chi} I$ follows that

$$\chi(1)\omega_{\chi}(\mathcal{C}_i) = \chi(\mathcal{C}_i) = \sum_{x \in C_i} = |C_i|\chi(g), \ g \in C_i$$

CONJUGACY ASSOCIATION SCHEMES

and so $\omega_{\chi}(\mathcal{C}_i) = \frac{\chi(g)|C_i|}{\chi(1)}$. This equality along with (2) implies that

(3)
$$\omega_{\chi}(\mathcal{C}_i\mathcal{C}_j) = \sum_{k=0}^d a_{ijk}\omega_{\chi}(\mathcal{C}_k)$$

Now we are ready to construct all irreducible characters of the scheme $Inv(\Gamma_G)$. For any $\chi \in Irr(G)$ we define the following \mathbb{C} -linear transformation

(4)
$$\widehat{\omega_{\chi}}$$
 : $W(\operatorname{Inv}(\Gamma_G)) \to \mathbb{C}, \ \widehat{\omega_{\chi}}(A_i) = \omega_{\chi}(\mathcal{C}_i)$

where $A_i = \sum_{g \in C_i} P_{(g^{-1})_{left}}$ is a basis element of the adjacency algebra $W(\text{Inv}(\Gamma_G))$.

We claim that

$$\operatorname{Irr}(W(\operatorname{Inv}(\Gamma_G))) = \{\widehat{\omega_{\chi}} : \chi \in \operatorname{Irr}(G)\}.$$

We first show that $\widehat{\omega_{\chi}}$ is an algebra homomorphism. To do so, we apply $\widehat{\omega_{\chi}}$ on both sides of the obvious equality:

$$A_i A_j = \sum_{k=0}^d a_{ijk} A_k$$

and we get the following equalities:

$$\widehat{\omega_{\chi}}(A_{i}A_{j}) = \widehat{\omega_{\chi}}(\sum_{k=0}^{d} a_{ijk}A_{k}) = \sum_{k=0}^{d} a_{ijk}\widehat{\omega_{\chi}}(A_{k})$$
$$= \sum_{k=0}^{d} a_{ijk}\omega_{\chi}(\mathcal{C}_{k}) = \omega_{\chi}(\mathcal{C}_{i})\omega_{\chi}(\mathcal{C}_{j}) \text{ (by (3) and (4))}$$
$$= \widehat{\omega_{\chi}}(A_{i})\widehat{\omega_{\chi}}(A_{j}) \text{ (by (4)).}$$

as desired. Hence $\widehat{\omega_{\chi}} \in \operatorname{Irr}(W(\operatorname{Inv}(\Gamma_G)))$. On the other hand, all $\widehat{\omega_{\chi}}$ are distinct, because if $\widehat{\omega_{\chi}} = \widehat{\omega_{\psi}}$, for two distinct elements $\chi, \psi \in \operatorname{Irr}(G)$, then $\widehat{\omega_{\chi}}(A_i) = \widehat{\omega_{\chi}}(A_i)$, for each A_i . It implies that $\chi(g_i) = \frac{\chi(1)}{\psi(1)}\psi(g_i)$, for each $i = 0, 1, \ldots, d$. This contradicts to the fact that the character table of a group is invertible as a matrix. This proves the above claim. In particular, we have shown that the mapping $\chi \mapsto \widehat{\omega_{\chi}}$ is a bijection between $\operatorname{Irr}(G)$ and $\operatorname{Irr}(W(\operatorname{Inv}(\Gamma_G)))$.

References

 E. Bannai, T. Ito, Algebraic combinatorics I: association schemes, Benjamin/Cummings Publishing Company, 1984.

175

^[2] P.-H. Zieschang, Theory of association schemes, Springer Monographs in Mathematics, 2005.