Tarbiat Moallem University, 20th Seminar on Algebra, 2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 178-181

ON CONNECTIONS BETWEEN ROUGH SET THEORY AND MV-ALGEBRAS

SAEED RASOULI

Department of Mathematics, Yazd university, Yazd, Iran srasouli@yazduni.ac.ir (Joint work with B. Davvaz)

ABSTRACT. In this talk, by considering the notion of MV-algebra, we are concerned with a relationship between rough set and MV-algebra theory. We shall introduce the notion of rough subalgebra (resp. ideal) with respect to an ideal of an MV-algebra, which is an extended notion of subalgebra (resp. ideal) in an MV-algebra. Also we shall give some properties of the lower and the upper approximations in an MV-algebra.

1. INTRODUCTION

The theory of rough sets was proposed by Pawlak [4] in 1982. The theory of rough sets is an extension of set theory, in which a subset of a universe is described by a pair of ordinary sets called the lower and upper approximations. Davvaz [3], introduced the notion of rough subrings (respectively ideal) with respect to an ideal of a ring, also see [2]

C. C. Chang in [1] introduced the notion of MV-algebra to provide an algebraic proof of the completeness theorem of infinite valued Lukasiewicz propositional calculus. An MV-algebra A is an abelian monoid $\langle A, 0, \oplus \rangle$ equipped with an operation * such that $(x^*)^* = x, x \oplus 0^* = 0^*$ and finally, $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$. If we define the constant $1 := 0^*$ and the auxiliary operations \odot , \lor , and \land by $a \odot b := (a^* \oplus b^*)^*$, $a \lor b := a \oplus (b \odot a^*)$ and $a \wedge b := a \odot (b \oplus a^*)$, then $(M, \odot, 1)$ is a commutative monoid and the structure $(M, \lor, \land, 0, 1)$ is a bounded distributive lattice. Also, we define the binary operation \ominus by $x \ominus y := x \odot y^*$. Now, if we define $x \leq y$ if and only if $x \wedge y = x$ for each $x, y \in M$, then according to [1], \leq is an order relation over M. If the order relation \leq defined over M, is total, then we say that M is linearly ordered. We write nx instead of $x \oplus \cdots \oplus x(n-times)$. Also, we define the order of an element x, denoted by ord(x), is the least integer m such that mx = 1. If no such integer m exists then we write $ord(x) = \infty$. We say MV-algebra M is *locally finite* if and only if, every element of M different from 0 has a finite order. Let X be a subset of an MV-algebra M. Chang in [1], has shown that every locally finite MV-algebra is linearly ordered. As usual, we say that X is

²⁰⁰⁰ Mathematics Subject Classification: 06D35.

keywords and phrases: Rough sets, Lower approximation, Upper approximation, MV-algebra, subalgebra, Rough subalgebra.

ON CONNECTIONS BETWEEN ROUGH SET THEORY AND MV-ALGEBRAS 179

an MV-subalgebra (for short, subalgebra) of M if and only if X is closed under the MV-operations defined in M. In an MV-algebra M, the distance function is defined by $d: M \times M \longrightarrow M$, where $d(a,b) := (a^* \odot b) \oplus (b^* \odot a)$. Let M be an MV-algebra and I a nonempty subset of M. Then we say that I is an ideal if the following conditions are satisfied: (1) $0 \in I$, (2) $x, y \in I$ imply $x \oplus y \in I$, and (3) $x \in I$ and $y \leq x$ imply $y \in I$. A proper ideal $P \in I(M)$ is called *prime* whenever $x \wedge y \in P$, then either $x \in P$ or $y \in P$. The set of all prime ideals of an MV-algebra M shall be denoted by spec(M). Let Mbe an MV-algebra and I is an ideal of M. Then the relation was induced by I, defined as: $x \sim_I y \equiv d(x,y) \in I$ is a congruence relation. The class of equivalence relation of $x \in M$ respected to I is denoted by $[x]_I$. Let M be a linearly ordered MV-algebra and X a subset of M. Then X is called *convex* if for every $x, y \in X$ and $z \in M, x \leq z \leq y$ implies $z \in X$.

Proposition 1.1. Let I be an ideal of a linearly ordered MV-algebra M. Then $[x]_I$ is convex for each $x \in M$.

A pair (U,θ) , where $U \neq \emptyset$ and θ is an equivalence relation on U, is called an approximation space. For an approximation space (U,θ) , by a rough approximation in (U,θ) we mean a mapping $Apr : P(U) \longrightarrow P(U) \times P(U)$ defined for every $X \in P(U)$ by $Apr(X) = (\underline{Apr}(X), \overline{Apr}(X))$, where $\overline{Apr}(X) =$ $\{x \in U : [x]_{\theta} \subseteq X\}, \underline{Apr}(X) = \{x \in U : [x]_{\theta} \cap X \neq \emptyset\}$. $\underline{Apr}(X)$, where $[x]_{\theta}$ is the equivalence class of x, is called a lower rough approximation of X in (U,θ) . Also, $\overline{Apr}(X)$ is called upper rough approximation of X in (U,θ) . If $\underline{Apr}(X) = \overline{Apr}(X)$, then X is called definable with respect to theta. If $Apr(X) = \emptyset$, then X is called empty interior respect to θ .

2. Main results

Throughout this paper M is an MV-algebra. Let I be an ideal of M and X be a nonempty subset of M. Then the sets $\underline{Apr}_{I}(X) = \{x \in M | [x]_{I} \subseteq M\}$ and $\overline{Apr}_{I}(X) = \{x \in M | [x]_{I} \cap M \neq \emptyset\}$ are called, respectively, lower and upper approximations of the set X with respect to the ideal I.

Example 2.1. Let $S_7 = \{0, 1/7, 2/7, \dots, 6/7, 1\}$. We define $p/7 + q/7 := \min\{(p+q)/7, 1\}$ and $(p/7)^* := (7-p)/7$, then $(S_7, +, *, 0)$ is an MV-algebra. Now, let θ be an equivalence relation with following equivalence classes: $E_1 = \{0, 3/7, 4/7\}, E_2 = \{1/7, 6/7\}, E_3 = \{2/7\}, E_4 = \{5/7\}$. Let $X := \{2/7, 4/7\}$, then $Apr(X) = \{2/7\}$ and $\overline{Apr}(X) := \{0, 2/7, 3/7, 4/7\}$.

Proposition 2.2. Let I be an ideal of M and X a non-empty set of M. Then $\overline{Apr}_I(X)^* = \overline{Apr}_I(X^*)$ and $\underline{Apr}_I(X)^* = \underline{Apr}_I(X^*)$.

Proposition 2.3. Let M be a linearly ordered MV-algebra, I an ideal of M and X a convex subset of M. Then $\overline{Apr}_{I}(X)$ and $Apr_{I}(X)$ are convex subsets.

Let X be a non-empty subset of an MV-algebra M, and X^{\perp} be the annihilator of X in M defined by $X^{\perp} = \{a \in M : a \land x = 0, \text{ for all } x \in X\}$. If $X = \{x\}$, then we write x^{\perp} for X^{\perp} .

180

SAEED RASOULI

Proposition 2.4. Let *I* be an ideal of *M* and *X* a non-empty set of *M*. Then $\underline{Apr}_{I}(X^{\perp}) \subseteq \underline{Apr}_{I}(X)^{\perp}$, $\overline{Apr}_{I}(X)^{\perp} \subseteq \overline{Apr}_{I}(X^{\perp})$ and $\overline{Apr}_{I}(X)^{\perp} \subseteq Apr_{I}(X)^{\perp}$.

Example 2.5. Let $M = \{0, x_1, x_2, x_3, x_4, 1\}$. Consider the following tables:

\oplus	0	x_1	x_2	x_3	x_4	1							
0	0	x_1	x_2	x_3	x_4	1							
			x_4				*	0	x_1	r_{0}	r_{2}	x_4	1
x_2	x_2	x_4	x_2	1	x_4	1		-			-	$\frac{x_4}{x_1}$	
x_3	x_3	x_3	1	x_3	1	1		1	x_4	x_3	x_2	x_1	0
			x_4										
1	1	1	1	1	1	1							

Then $(M, \oplus, *, 0)$ is an MV-algebra. Let $X = \{0, x_2, x_4, 1\}$ and $Y = \{0, x_1, x_3\}$ be subsets of M and $I = \{0, x_2\}$ the ideal of M. It is easy to check that $X^{\perp} = \{0\}$ and $Y^{\perp} = \{0, x_2\}$, so we have $\underline{Apr}_I(X^{\perp}) = \emptyset$, $\underline{Apr}_I(X)^{\perp} = \{0, x_1\}$, $\overline{Apr}_I(X)^{\perp}) = \{0\}$, $\overline{Apr}_I(Y^{\perp}) = \{0, x_2\}$, and $\overline{Apr}_I(Y)^{\perp} = \{0\}$, so $\underline{Apr}_I(X)^{\perp} \notin \underline{Apr}_I(X^{\perp})$, $\overline{Apr}_I(Y^{\perp}) \notin \overline{Apr}_I(Y)^{\perp}$ and $\underline{Apr}_I(X)^{\perp} \notin \overline{Apr}_I(X)^{\perp}$.

Let X and Y be non-empty subsets of M. Then we have

 $X + Y = \{a \in M : a \le x \oplus y, x \in X, y \in Y\}.$

If either X or Y are empty, then we define $X + Y = \emptyset$. Clearly, X + Y = Y + X for every $X, Y \subseteq M$. If I and J are two subalgebras or ideals of an MV-algebra M, we can show that I + J is the smallest ideal such that contained I and J. In fact I + J is the ideal generated by $I \cup J$. Moreover, if I, J and K are three ideals of M such that $I \subseteq K$ and $J \subseteq K$ then we obtain $I + J \subseteq K$.

Proposition 2.6. Let I be an ideal of an MV-algebra of M and X, Y nonempty subsets of M. Then $\overline{Apr}_I(X+Y) \subseteq \overline{Apr}_I(X) + \overline{Apr}_I(Y)$. Particularly, If M is a linearly ordered MV-algebra, then $\overline{Apr}_I(X+Y) = \overline{Apr}_I(X) + \overline{Apr}_I(Y)$.

Lemma 2.7. Let I be an ideal of MV-algebra M and X non-empty subset of M. Then X is definable if and only if $Apr_I(X) = X$ or $\overline{Apr_I}(X) = X$.

Proposition 2.8. Let M be an MV-algebra, I an ideal of M and X, Y subsets of M such that X + I = X or Y + I = Y. Then X + Y is a definable set with respect to I. Particularly, If X is an arbitrary subset of M then X + I is a definable set with respect to I.

Proposition 2.9. Let I be an ideal of an MV-algebra of M and X, Y nonempty subsets of M. Then $Apr_{I}(X) + Apr_{I}(Y) \subseteq Apr_{I}(X+Y)$.

Example 2.10. Let M be a linearly ordered MV-algebra that it is not locally finite and $I \neq 0$ be a proper ideal of M. Let $X = \{0\}$ and $Y = \{1\}$. Clearly, X+Y = M so $Apr_I(X+Y) = M$, but one can see that $Apr_I(X) + Apr_I(Y) = \emptyset$.

Proposition 2.11. Let I, J be two ideals of MV-algebra M and X a nonempty subset of M. If $X \subseteq B(M)$ or M is a linearly ordered MV-algebra, then $\overline{Apr}_{I+J}(X) \subseteq \overline{Apr}_I(X) + \overline{Apr}_J(X)$. ON CONNECTIONS BETWEEN ROUGH SET THEORY AND MV-ALGEBRAS 181

Example 2.12. Let M be a linearly ordered MV-algebra, $0 = \{0\}$ the ideal of M and $t \neq 0$ an element of M such that $ord(t) \neq 2$. By Proposition 2.8, t + 0 is a definable set with respect to ideal 0, so by Proposition 3.13, we have $t + 0 \subseteq t + t + 0$. Now, we claim that $t \oplus t \notin t + 0$. Assume $t \oplus t \in t + 0$, so there exists $s \leq t$ such that $t \oplus t \leq s$. We can obtain that t = 0 and it is a contradiction. Hence, it implies that $\overline{Apr}_I(X) + \overline{Apr}_J(X)$ is not a subset of $\overline{Apr}_{I+J}(X)$.

Proposition 2.13. Let I, J be two ideals of MV-algebra M and X a nonempty subset of M. Then $\underline{Apr}_{I+J}(X) \subseteq \underline{Apr}_I(X) + \underline{Apr}_J(X)$. Furthermore, if $a \in \underline{Apr}_I(X) + \underline{Apr}_J(X)$ we obtain $[a]_{I+J} \subseteq \underline{Apr}_I(X) + \underline{Apr}_J(X)$. Moreover, If X is an ideal of M, we obtain that $\underline{Apr}_{I+J}(X) = \underline{Apr}_I(X) + \underline{Apr}_J(X)$.

Proposition 2.14. Let X be a non-empty subset of M. Then $\bigcap_{P \in spec(M)} \underline{Apr}_P(X) = 0$. Let I, J be two ideals of MV-algebra M and X a non-empty subset of \overline{M} . If X is an ideal of M and I, $J \subseteq X$, or M is a linearly ordered MV-algebra, then $\underline{Apr}_I(X) \cap \underline{Apr}_J(X) = \underline{Apr}_{I \cap J}(X)$. If X is definable with respect to I or J, or M a linearly ordered MV-algebra then $\overline{Apr}_{I \cap J}(X) = \overline{Apr}_I(X) \cap \overline{Apr}_I(X)$.

Proposition 2.15. Let M be an MV-algebra and I an ideal of M. If X is a subalgebra of M, then $\overline{Apr}_I(X)$ is a subalgebra too. In particular, if M is a linearly ordered MV-algebra and J an ideal of M then $\overline{Apr}_I(J)$ is an ideal of M.

Proposition 2.16. Let I and J be two ideals of M. Then $\underline{Apr}_{I}(J)$ is an ideal when $I \subseteq J$ and J is not empty interior. Furthermore, if \overline{M} is linearly ordered then J is definable or $Apr_{I}(J) = (0,0)$.

References

- C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88, (1958), 467-490.
- [2] S.D. Comer, On connections between information systems, rough sets and algebraic logic, Algebraic Methods in Logic and Computer Science, 28, Banach Center Publications, 1993, pp. 117124.
- [3] B. Davvaz, Roughness in rings, Inform. Sci. 164 (2004) 147163.
- [4] Z. Pawlak, Rough sets, Int. J. Inf. Comput. Sci. 11 (1982) 341356.