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Abstract. In this talk, by considering the notion of MV-algebra, we

are concerned with a relationship between rough set and MV-algebra
theory. We shall introduce the notion of rough subalgebra (resp. ideal)

with respect to an ideal of an MV-algebra, which is an extended notion

of subalgebra (resp. ideal) in an MV-algebra. Also we shall give some
properties of the lower and the upper approximations in an MV-algebra.

1. Introduction

The theory of rough sets was proposed by Pawlak [4] in 1982. The theory
of rough sets is an extension of set theory, in which a subset of a universe is
described by a pair of ordinary sets called the lower and upper approximations.
Davvaz [3], introduced the notion of rough subrings (respectively ideal) with
respect to an ideal of a ring, also see [2]

C. C. Chang in [1] introduced the notion of MV-algebra to provide an
algebraic proof of the completeness theorem of infinite valued Lukasiewicz
propositional calculus. An MV-algebra A is an abelian monoid < A, 0,⊕ >
equipped with an operation ∗ such that (x∗)∗ = x, x ⊕ 0∗ = 0∗ and finally,
(x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x. If we define the constant 1 := 0∗ and the
auxiliary operations �, ∨, and ∧ by a � b := (a∗ ⊕ b∗)∗, a ∨ b := a ⊕ (b � a∗)
and a ∧ b := a � (b ⊕ a∗), then (M,�, 1) is a commutative monoid and the
structure (M,∨,∧, 0, 1) is a bounded distributive lattice. Also, we define the
binary operation 	 by x	 y := x� y∗. Now, if we define x ≤ y if and only if
x∧y = x for each x, y ∈ M , then according to [1], ≤ is an order relation over M .
If the order relation ≤ defined over M , is total, then we say that M is linearly
ordered. We write nx instead of x⊕· · ·⊕x(n−times). Also, we define the order
of an element x, denoted by ord(x), is the least integer m such that mx = 1.
If no such integer m exists then we write ord(x) = ∞. We say MV-algebra M
is locally finite if and only if, every element of M different from 0 has a finite
order. Let X be a subset of an MV-algebra M . Chang in [1], has shown that
every locally finite MV-algebra is linearly ordered. As usual, we say that X is
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an MV-subalgebra (for short, subalgebra) of M if and only if X is closed under
the MV-operations defined in M . In an MV-algebra M , the distance function
is defined by d : M × M −→ M , where d(a, b) := (a∗ � b) ⊕ (b∗ � a). Let
M be an MV-algebra and I a nonempty subset of M . Then we say that I is
an ideal if the following conditions are satisfied: (1) 0 ∈ I, (2) x, y ∈ I imply
x ⊕ y ∈ I, and (3) x ∈ I and y ≤ x imply y ∈ I. A proper ideal P ∈ I(M)
is called prime whenever x ∧ y ∈ P , then either x ∈ P or y ∈ P . The set
of all prime ideals of an MV-algebra M shall be denoted by spec(M). Let M
be an MV-algebra and I is an ideal of M . Then the relation was induced by
I, defined as: x ∼I y ≡ d(x, y) ∈ I is a congruence relation. The class of
equivalence relation of x ∈ M respected to I is denoted by [x]I . Let M be a
linearly ordered MV-algebra and X a subset of M . Then X is called convex if
for every x, y ∈ X and z ∈ M , x ≤ z ≤ y implies z ∈ X.

Proposition 1.1. Let I be an ideal of a linearly ordered MV-algebra M . Then
[x]I is convex for each x ∈ M .

A pair (U, θ), where U 6= ∅ and θ is an equivalence relation on U, is called
an approximation space. For an approximation space (U, θ), by a rough ap-
proximation in (U, θ) we mean a mapping Apr : P (U) −→ P (U) × P (U) de-
fined for every X ∈ P (U) by Apr(X) = (Apr(X), Apr(X)), where Apr(X) =
{x ∈ U : [x]θ ⊆ X}, Apr(X) = {x ∈ U : [x]θ ∩ X 6= ∅}. Apr(X), where
[x]θ is the equivalence class of x, is called a lower rough approximation of X
in (U, θ). Also, Apr(X) is called upper rough approximation of X in (U, θ).
If Apr(X) = Apr(X), then X is called definable with respect to theta. If
Apr(X) = ∅, then X is called empty interior respect to θ.

2. Main results

Throughout this paper M is an MV-algebra. Let I be an ideal of M and X
be a nonempty subset of M . Then the sets Apr

I
(X) = {x ∈ M |[x]I ⊆ M} and

AprI(X) = {x ∈ M |[x]I ∩ M 6= ∅} are called, respectively, lower and upper
approximations of the set X with respect to the ideal I.

Example 2.1. Let S7 = {0, 1/7, 2/7, · · · , 6/7, 1}. We define p/7 + q/7 :=
min{(p + q)/7, 1} and (p/7)∗ := (7− p)/7, then (S7,+, ∗, 0) is an MV-algebra.
Now, let θ be an equivalence relation with following equivalence classes: E1 =
{0, 3/7, 4/7}, E2 = {1/7, 6/7}, E3 = {2/7}, E4 = {5/7}. Let X := {2/7, 4/7},
then Apr(X) = {2/7} and Apr(X) := {0, 2/7, 3/7, 4/7}.

Proposition 2.2. Let I be an ideal of M and X a non-empty set of M . Then
AprI(X)∗ = AprI(X∗) and Apr

I
(X)∗ = Apr

I
(X∗).

Proposition 2.3. Let M be a linearly ordered MV-algebra, I an ideal of M
and X a convex subset of M . Then AprI(X) and Apr

I
(X) are convex subsets.

Let X be a non-empty subset of an MV-algebra M , and X⊥ be the anni-
hilator of X in M defined by X⊥ = {a ∈ M : a ∧ x = 0, for all x ∈ X}. If
X = {x}, then we write x⊥ for X⊥.
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Proposition 2.4. Let I be an ideal of M and X a non-empty set of M .
Then Apr

I
(X⊥) ⊆ Apr

I
(X)⊥, AprI(X)⊥ ⊆ AprI(X⊥) and AprI(X)⊥ ⊆

Apr
I
(X)⊥.

Example 2.5. Let M = {0, x1, x2, x3, x4, 1}. Consider the following tables:
⊕ 0 x1 x2 x3 x4 1

0 0 x1 x2 x3 x4 1

x1 x1 x3 x4 x3 1 1

x2 x2 x4 x2 1 x4 1

x3 x3 x3 1 x3 1 1
x4 x4 1 x4 1 1 1

1 1 1 1 1 1 1

∗ 0 x1 x2 x3 x4 1

1 x4 x3 x2 x1 0

Then (M,⊕, ∗, 0) is an MV-algebra. Let X = {0, x2, x4, 1} and Y = {0, x1, x3}
be subsets of M and I = {0, x2} the ideal of M . It is easy to check that
X⊥ = {0} and Y ⊥ = {0, x2}, so we have Apr

I
(X⊥) = ∅, Apr

I
(X)⊥ = {0, x1},

AprI(X)⊥) = {0}, AprI(Y ⊥) = {0, x2}, and AprI(Y )⊥ = {0}, so Apr
I
(X)⊥ *

Apr
I
(X⊥), AprI(Y ⊥) * AprI(Y )⊥ and Apr

I
(X)⊥ * AprI(X)⊥.

Let X and Y be non-empty subsets of M . Then we have

X + Y = {a ∈ M : a ≤ x⊕ y, x ∈ X, y ∈ Y }.

If either X or Y are empty, then we define X +Y = ∅. Clearly, X +Y = Y +X
for every X, Y ⊆ M . If I and J are two subalgebras or ideals of an MV-algebra
M , we can show that I + J is the smallest ideal such that contained I and J .
In fact I +J is the ideal generated by I ∪J . Moreover, if I, J and K are three
ideals of M such that I ⊆ K and J ⊆ K then we obtain I + J ⊆ K.

Proposition 2.6. Let I be an ideal of an MV-algebra of M and X, Y non-
empty subsets of M . Then AprI(X+Y ) ⊆ AprI(X)+AprI(Y ). Particularly, If
M is a linearly ordered MV-algebra, then AprI(X +Y ) = AprI(X)+AprI(Y ).

Lemma 2.7. Let I be an ideal of MV-algebra M and X non-empty subset of
M . Then X is definable if and only if Apr

I
(X) = X or AprI(X) = X.

Proposition 2.8. Let M be an MV-algebra, I an ideal of M and X, Y subsets
of M such that X + I = X or Y + I = Y . Then X + Y is a definable set with
respect to I. Particularly, If X is an arbitrary subset of M then X + I is a
definable set with respect to I.

Proposition 2.9. Let I be an ideal of an MV-algebra of M and X, Y non-
empty subsets of M . Then Apr

I
(X) + Apr

I
(Y ) ⊆ Apr

I
(X + Y ).

Example 2.10. Let M be a linearly ordered MV-algebra that it is not locally
finite and I 6= 0 be a proper ideal of M . Let X = {0} and Y = {1}. Clearly,
X+Y = M so Apr

I
(X+Y ) = M , but one can see that Apr

I
(X)+Apr

I
(Y ) = ∅.

Proposition 2.11. Let I, J be two ideals of MV-algebra M and X a non-
empty subset of M . If X ⊆ B(M) or M is a linearly ordered MV-algebra, then
AprI+J(X) ⊆ AprI(X) + AprJ(X).

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


ON CONNECTIONS BETWEEN ROUGH SET THEORY AND MV-ALGEBRAS 181

Example 2.12. Let M be a linearly ordered MV-algebra, 0 = {0} the ideal
of M and t 6= 0 an element of M such that ord(t) 6= 2. By Proposition 2.8,
t + 0 is a definable set with respect to ideal 0, so by Proposition 3.13, we have
t + 0 ⊆ t + t + 0. Now, we claim that t ⊕ t /∈ t + 0. Assume t ⊕ t ∈ t + 0,
so there exists s ≤ t such that t ⊕ t ≤ s. We can obtain that t = 0 and it is
a contradiction. Hence, it implies that AprI(X) + AprJ(X) is not a subset of
AprI+J(X).

Proposition 2.13. Let I, J be two ideals of MV-algebra M and X a non-
empty subset of M . Then Apr

I+J
(X) ⊆ Apr

I
(X)+Apr

J
(X). Furthermore, if

a ∈ Apr
I
(X) + Apr

J
(X) we obtain [a]I+J ⊆ Apr

I
(X) + Apr

J
(X). Moreover,

If X is an ideal of M , we obtain that Apr
I+J

(X) = Apr
I
(X) + Apr

J
(X).

Proposition 2.14. Let X be a non-empty subset of M . Then
⋂

P∈spec(M) Apr
P

(X) =
0. Let I, J be two ideals of MV-algebra M and X a non-empty subset of M . If
X is an ideal of M and I, J ⊆ X, or M is a linearly ordered MV-algebra, then
Apr

I
(X)∩Apr

J
(X) = Apr

I∩J
(X). If X is definable with respect to I or J , or

M a linearly ordered MV-algebra then AprI∩J(X) = AprI(X) ∩AprI(X).

Proposition 2.15. Let M be an MV-algebra and I an ideal of M . If X is a
subalgebra of M , then AprI(X) is a subalgebra too. In particular, if M is a
linearly ordered MV-algebra and J an ideal of M then AprI(J) is an ideal of
M .

Proposition 2.16. Let I and J be two ideals of M . Then Apr
I
(J) is an ideal

when I ⊆ J and J is not empty interior. Furthermore, if M is linearly ordered
then J is definable or AprI(J) = (0, 0).
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