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ABSTRACT. In this talk, by considering the notion of MV-algebra, we
are concerned with a relationship between rough set and MV-algebra
theory. We shall introduce the notion of rough subalgebra (resp. ideal)
with respect to an ideal of an MV-algebra, which is an extended notion
of subalgebra (resp. ideal) in an MV-algebra. Also we shall give some
properties of the lower and the upper approximations in an MV-algebra.

1. INTRODUCTION

The theory of rough sets was proposed by Pawlak [4] in 1982. The theory
of rough sets is an extension of set theory, in which a subset of a universe is
described by a pair of ordinary sets called the lower and upper approximations.
Davvaz [3], introduced the notion of rough subrings (respectively ideal) with
respect to an ideal of a ring, also see [2]

C. C. Chang in [1] introduced the notion of MV-algebra to provide an
algebraic proof of the completeness theorem of infinite valued Lukasiewicz
propositional calculus. An MV-algebra A is an abelian monoid < A4,0,® >
equipped with an operation * such that (z*)* = z, x ® 0* = 0* and finally,
oy @y = (y* D) @z If we define the constant 1 := 0* and the
auxiliary operations ®, V, and A by a ® b := (a* ®@b*)*, aVb:=a® (b ©® a*)
and a Ab:=a® (b® a*), then (M,®,1) is a commutative monoid and the
structure (M, V,A,0,1) is a bounded distributive lattice. Also, we define the
binary operation © by x © y := x ® y*. Now, if we define x < y if and only if
x Ay = x for each z,y € M, then according to [1], < is an order relation over M.
If the order relation < defined over M, is total, then we say that M is linearly
ordered. We write nx instead of @ - -z (n—times). Also, we define the order
of an element z, denoted by ord(x), is the least integer m such that mx = 1.
If no such integer m exists then we write ord(z) = co. We say MV-algebra M
is locally finite if and only if, every element of M different from 0 has a finite
order. Let X be a subset of an MV-algebra M. Chang in [1], has shown that
every locally finite MV-algebra is linearly ordered. As usual, we say that X is
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an MV-subalgebra (for short, subalgebra) of M if and only if X is closed under
the MV-operations defined in M. In an MV-algebra M, the distance function
is defined by d : M x M — M, where d(a,b) := (a* ®b) ® (b* ® a). Let
M be an MV-algebra and I a nonempty subset of M. Then we say that I is
an ideal if the following conditions are satisfied: (1) 0 € I, (2) x,y € I imply
x@®y €l and (3) x € I and y < x imply y € I. A proper ideal P € I(M)
is called prime whenever x Ay € P, then either x € P or y € P. The set
of all prime ideals of an MV-algebra M shall be denoted by spec(M). Let M
be an MV-algebra and I is an ideal of M. Then the relation was induced by
I, defined as: = ~y y = d(z,y) € I is a congruence relation. The class of
equivalence relation of x € M respected to I is denoted by [z];. Let M be a
linearly ordered MV-algebra and X a subset of M. Then X is called convez if
for every z,y € X and z € M, x < z < y implies z € X.

Proposition 1.1. Let I be an ideal of a linearly ordered MV-algebra M. Then
[z]1 is convex for each x € M.

A pair (U, 0), where U # () and 6 is an equivalence relation on U, is called
an approximation space. For an approximation space (U, 0), by a rough ap-
proximation in (U, 6) we mean a mapping Apr : P(U) — P(U) x P(U) de-
fined for every X € P(U) by Apr(X) = (Apr(X), Apr(X)), where Apr(X) =
{x eU:[zlp € X}, Apr(X) = {x € U : [zl n X # 0}. Apr(X), where
[]p is the equivalence class of x, is called a lower rough approximation of X
in (U,0). Also, Apr(X) is called upper rough approximation of X in (U, 6).
If Apr(X) = Apr(X), then X is called definable with respect to theta. If
Apﬁ() = (), then X is called empty interior respect to 6.

2. MAIN RESULTS

Throughout this paper M is an MV-algebra. Let I be an ideal of M and X
be a nonempty subset of M. Then the sets Apr (X) = {z € M|[z]; C M} and
Apr(X) = {z € M|[z]f N M # 0} are called, respectively, lower and upper
approximations of the set X with respect to the ideal I.

Example 2.1. Let S7; = {0,1/7,2/7,---,6/7,1}. We define p/7 + ¢q/7 :=
min{(p +¢)/7,1} and (p/7)* := (7 —p)/7, then (S7,+, x,0) is an MV-algebra.
Now, let 6 be an equivalence relation with following equivalence classes: E; =
{0,3/7,4/7}, Eo = {1/7,6/7}, E3 = {2/7}, E4 = {5/7}. Let X := {2/7,4/7},
then Apr(X) = {2/7} and Apr(X) := {0,2/7,3/7,4/7}.

Proposition 2.2. Let I be an ideal of M and X a non-empty set of M. Then
Apr(X)* = Apr(X*) and Apr (X)* = Apr (X*).

Proposition 2.3. Let M be a linearly ordered MV-algebra, I an ideal of M
and X a conver subset of M. Then Apr(X) and Apr (X) are convex subsets.

Let X be a non-empty subset of an MV-algebra M, and X+ be the anni-
hilator of X in M defined by X+ ={a € M :aAx =0, forallz € X}. If
X = {z}, then we write z* for X+.
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Proposition 2.4. Let I be an ideal of M and X a non-empty set of M.
Then @I(XJ-) - @I(X)J—, Apr (X))t C Apr(X1) and Apr (X)*+ C
Apr (X)*.

Example 2.5. Let M = {0, 21, x2,x3,24,1}. Consider the following tables:
[S3) ‘ 0 1 T2 T3 T4
0 0 =z =2 x3 m4
r1 | 1 T3 T4 T3 1
o | x99 x4 X2 1 x4
T3 xr3 T3 1 xr3 1
T4 | T4 1 x4 1 1
1 1 1 1 1 1
Then (M, ®, *,0) is an MV-algebra. Let X = {0,29,24,1} and Y = {0, 21,23}
be subsets of M and I = {0,z2} the ideal of M. It is easy to check that
ﬁ: {0} and Y+ i{O,x2}7 so we have @L(XJ-) =0, Apr (X)* = {0,21},
Apr(X)*) = {0}, Apr;(Y+) = {0, 22}, and Apr;(Y)* = {0}, so Apr (X)*= &
Apr (X*), Apr(Y*+) & Apri(Y)* and Apr (X)* & Apr (X)*.

*‘0 ry x3 x3 x4 1

‘1 T4 xs3 ) 1

el e e

Let X and Y be non-empty subsets of M. Then we have
X+Y={aeM:a<zdyzxeX,ycY}.

If either X or Y are empty, then we define X +Y = (. Clearly, X +Y =Y + X
for every X, Y C M. If I and J are two subalgebras or ideals of an MV-algebra
M, we can show that I 4 J is the smallest ideal such that contained I and J.
In fact I+ J is the ideal generated by I UJ. Moreover, if I, J and K are three
ideals of M such that I C K and J C K then we obtain I +J C K.

Proposition 2.6. Let I be an ideal of an MV-algebra of M and X,Y non-
empty subsets of M. Then Apr(X+Y) C Apr;(X)+Apr;(Y). Particularly, If
M is a linearly ordered MV-algebra, then Apr (X +Y) = Apr (X)+ Apr (V).

Lemma 2.7. Let I be an ideal of MV-algebra M and X non-empty subset of
M. Then X is definable if and only if Apr (X) =X or Apr;(X)=X.

Proposition 2.8. Let M be an MV-algebra, I an ideal of M and X,Y subsets
of M such that X + I =X orY +1=Y. Then X +Y is a definable set with
respect to I. Particularly, If X is an arbitrary subset of M then X + 1 is a
definable set with respect to I.

Proposition 2.9. Let I be an ideal of an MV-algebra of M and X,Y non-
empty subsets of M. Then Apr (X)+ Apr (Y) C Apr (X +7Y).

Example 2.10. Let M be a linearly ordered MV-algebra that it is not locally
finite and I # 0 be a proper ideal of M. Let X = {0} and Y = {1}. Clearly,
X+Y =M so Apr (X+Y) = M, but one can see that Apr (X)+Apr (V) = 0.

Proposition 2.11. Let I,J be two ideals of MV-algebra M and X a non-
empty subset of M. If X C B(M) or M is a linearly ordered MV-algebra, then
Apr 5 (X) € Apr(X) + Apr;(X).
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Example 2.12. Let M be a linearly ordered MV-algebra, 0 = {0} the ideal
of M and t # 0 an element of M such that ord(t) # 2. By Proposition 2.8,
t+ 0 is a definable set with respect to ideal 0, so by Proposition 3.13, we have
t+0Ct+t+0. Now, we claim that t ®t ¢ t +0. Assume t®t € t+0,
so there exists s < t such that t ®t < s. We can obtain that t = 0 and it is
a contradiction. Hence, it implies that Apr;(X) + Apr ;(X) is not a subset of
Aprpy(X).

Proposition 2.13. Let I,J be two ideals of MV-algebra M and X a non-
empty subset of M. Then MHJ(X) C Apr (X)+ Apr (X). Furthermore, if
a € Apr (X) + Apr (X) we obtain [a];+; € Apr (X) + Apr (X). Moreover,
If X is an ideal of M, we obtain that @HJ(X) = Apr (X) + Apr (X).

Proposition 2.14. Let X be a non-empty subset of M. Then ﬂpespec(M) @P(X) =
0. Let I,J be two ideals of MV-algebra M and X a non-empty subset of M. If

X is an ideal of M and I,J C X, or M is a linearly ordered MV-algebra, then

Apr (X)NApr (X) = Apr, (X). If X is definable with respect to I or J, or

M a linearly ordered MV-algebra then Aprn;(X) = Apr;(X) N Apr;(X).

Proposition 2.15. Let M be an MV-algebra and I an ideal of M. If X is a
subalgebra of M, then Apr;(X) is a subalgebra too. In particular, if M is a
linearly ordered MV-algebra and J an ideal of M then Apr;(J) is an ideal of
M.

Proposition 2.16. Let I and J be two ideals of M. Then Apr (J) is an ideal
when I C J and J is not empty interior. Furthermore, if M is linearly ordered
then J is definable or Apri(J) = (0,0).
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