Tarbiat Moallem University, 20th Seminar on Algebra, 2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 186-189

TRIANGULAR MATRIX REPRESENTATIONS OF RING EXTENSIONS

M. ROBAT SARPOOSHI AND E. HASHEMI

Shahrood University of Technology M.Sarpooshi@yahoo.com

ABSTRACT. We investigate the class of piecewise prime, PWP, rings which properly includes all piecewise domain. For a PWP ring we determine a large class of ring extensions which have a generalized triangular matrix representation for which the diagonal rings are prime. We investigate the quasi-Baer and related conditions on monoid rings R[G]. In particular we consider the transfer of the quasi-Baer and related conditions between R and a u.p.-monoid ring R[G] of a u.p.-monoid G over R. We characterize the semi-central idempotents of various ring extensions of R in terms of the semi-central idempotents of R.

1. INTRODUCTION

All rings are associative and R denotes a ring with unity 1. By a ring extension we mean an covering of R which has the same unity as R. An idempotent $e \in R$ is left(right) semi-central in R if exe = xe (exe = ex) for all $e \in R$. we use $S_l(R)$ and $S_r(R)$ for the sets of all left and right semi-central idempotents respectively. An idempotent e of R is semi-central reduced if $S_l(eRe) = \{0, e\}$. Note that $S_l(eRe) = \{0, R\}$ if and only if $S_r(eRe) = \{0, R\}$. A ring R is semi-central reduced if 1 is semi-central reduced. Also note that $S_r(R) \cap S_l(R) = B(R)$, where B(R) is the set of all central idempotents R. A ring R has a generalized triangular matrix representation if there exists a ring isomorphism

 $\Theta: R \longrightarrow \begin{bmatrix} R_1 & R_{12} & \dots & R_{1n} \\ 0 & R_2 & \dots & R_{2n} \\ & 0 & \dots & & \\ & \ddots & \ddots & \ddots & \\ & \ddots & \ddots & \ddots & \\ 0 & \ddots & \ddots & 0 & R_n \end{bmatrix}$ where each diagonal ring, R_i , is a where each diagonal ring, R_i , is a

ring with unity, R_{ij} is a left R_i -right R_j -bimodule for i < j, and the matrices obey the usual rules for matrix addition and multiplication. If each R_i is semicentral reduced then R has a complete generalized triangular matrix representation with triangulating dimension n. R is called right principally quasi-Baer (or simply right p.q.-Baer) if the right annihilator of a principal right ideal is

²⁰⁰⁰ Mathematics Subject Classification: 16S60;16D70;16S50.

keywords and phrases: Ring extension; Quasi-Baer ring; Semi-central idempotent; U.p.-monoid ring.

187

generated by an idempotent. An ordered set $\{b_1, ..., b_n\}$ of nonzero distinct idempotents in R is called a set of *left triangulating idempotents* of R if all the following hold: (i) $1 = b_1 + \ldots + b_n$; (ii) $b_1 \in S_l(R)$; and (iii) $b_{k+1} \in S_l(c_k R c_k)$ where $c_k = 1 - (b_1 + ... + b_k)$ for $1 \le k \le n - 1$. A set $\{b_1, ..., b_n\}$ of left triangulating idempotents is said to be *complete* if each b_i is semi-central reduced. Any complete set of primitive idempotents determines a complete set of left triangulating idempotents. R has a (complete) set of left triangulating idempotents if and only if R has a (complete) generalized triangular matrix representation. R has triangulating dimension n, written Tdim(R) = n if R has a complete set of left triangulating idempotents with exactly n elements. R is semi-central reduced if and only if Tdim(R) = 1. Let B be a set of left triangulating idempotents of R and Γ a ring extension of R. (i) We say Γ is *B-triangularly linked* to R if whenever $b \in B$ and $0 \neq c \in S_l(b\Gamma b)$, then there exists $0 \neq c_0 \in S_l(bRb)$ such that $c_0 \Gamma \subseteq c\Gamma$. (ii) we say Γ is *B*-triangularly *compatible* with R if B is a set of left triangulating idempotents of Γ . If Γ is B-triangularly linked to (resp. triangularly compatible with) R for every set Bof left triangulating idempotents, then we say Γ is triangularly linked to(resp. triangularly compatible with) R. we call $b \in R$ a triangulating idempotent if b is in some set of left triangulating idempotents of R. For any subset X of a ring R, $r_R(X)$ (resp. $\ell_R(X)$) denotes the right (resp. left) annihilator of X in R.

2. Main results

Theorem 2.1. Let R[G] be the monoid ring of a u.p.-monoid G over a ring R. then we have the following: (i) R is right p.q.-Baer if and only if R[G] is right p.q.-Baer. (ii) R is quasi-Baer if and only if R[G] is quasi-Baer.

Theorem 2.2. let σ be a ring endomorphism of R and X a nonempty set of not necessarily commuting indeterminates. (i) Let $\Gamma = R[x;\sigma]$ or $R[[x;\sigma]]$. Then $e \in S_l(\Gamma)$ with $e_0 \in R$ the constant term of e if and only if $e_0 \in S_l(R)$, $ee_0 = e_0, e_0e = e$. (ii) Let $\Delta = R[X]$ or R[[X]]. Then $e \in S_l(\Delta)$ with $e_0 \in R$ the constant term of e if and only if $e_0 \in S_l(R)$, $ee_0 = e_0$, $e_0e = e$.

Theorem 2.3. Let R be a right p.q.-Baer ring. Then Tdim(R) = n if and only if R has exactly n minimal prime ideals.

Theorem 2.4. Let 1_M denote the unity of $Mat_n(R)$ and $\overline{R} = R.1_M$. Then $e = (e_{ij}) \in S_l(Mat_n(R))$ if and only if $e_0 \in S_l(\overline{R})$ and $e_0Mat_n(R) = eMat_n(R)$, where $e_0 = e_{11}.1_M$.

Theorem 2.5. Let X be a nonempty set of not necessarily commuting indeterminates, σ an endomorphism of R, and G a monoid. The following extensions of R are triangularly linked to R and triangularly compatible with R, hence have the same triangulating dimension as R: (i) R[G] where G is a u.p.-monoid and R is a right p.q.-Baer ring; (ii) R[G] where G is a free monoid; (iii) R[X]; (iv) R[[X]]; (V) $R[x, x^{-1}]$; (vi) $R[[x, x^{-1}]]$; (vii) $R[x; \sigma]$ where σ is a ring endomorphism of R such that $\sigma(bR) \subseteq bR$ for every left triangulating idempotent $b \in R$; (viii) $R[[x; \sigma]]$ where σ is a ring endomorphism of R such that $\sigma(bR) \subseteq bR$ for every left triangulating idempotent $b \in R$; (iX) $Mat_n(R)$.

M. ROBAT SARPOOSHI AND E. HASHEMI

Theorem 2.6. Let R be a quasi-Baer ring with a complete set of left triangulating idempotents $B = \{b_1, ..., b_n\}$. If Γ is any of the following ring extensions of R then Γ is a quasi-Baer ring with B determining a complete generalized triangular matrix representation for Γ in which each diagonal ring R_i is a prime ring: (i) R[G] where G is a u.p.-monoid; (ii) R[X] where X is a nonempty set of not necessarily commuting indeterminates; (iii) R[[X]] where X is a nonempty set of not necessarily commuting indeterminates; (iv) $R[x, x^{-1}]$; (v) $R[[x, x^{-1}]]$; (vi) $R[x; \alpha]$ where α is a ring automorphism such that $\alpha(bR) \subseteq bR$ for all $b \in R$; (vii) $R[[x; \alpha]]$ where α is a ring automorphism such that $\alpha(bR) \subseteq bR$ for all $b \in R$; (viii) $T_n(R)$; (ix) $Mat_n(R)$.

Theorem 2.7. For a ring R with a complete set of triangulating idempotents, the following conditions are equivalent: (i) R is right p.q.-Baer; (ii) R is left p.q.-Baer; (iii) R is quasi-Baer; (iv) R is a pwp ring.

Lemma 2.8. Let R = F[G] be a semi-prime group algebra over a field F. Then R is quasi-Baer if and only if each annihilator ideal is finitely generated.

Lemma 2.9. Let $\{b_1, ..., b_n\}$ be a set of left triangulating idempotents of R. Then $Tdim(R) = \sum_{i=1}^{n} Tdim(b_iRb_i)$. In particular $n \leq Tdim(R)$.

Lemma 2.10. If R satisfies any of the following conditions then R has a complete triangular matrix representations: (i) R has a complete set of primitive idempotents; (ii) R has no infinite set of orthogonal idempotents; (iii) R has D.C.C on(idempotent generated, principal, or finitely generated) ideals; (iv) R has D.C.C on(idempotent generated, principal, or finitely generated) ideals; (v) R has A.C.C on(idempotent generated, principal, or finitely generated) ideals; (v) R has A.C.C on(idempotent generated, principal, or finitely generated) ideals; (vi) R has A.C.C on(idempotent generated, principal, or finitely generated) ideals; (vi) R has A.C.C on(idempotent generated, principal, or finitely generated) ideals; (vi) R has either A.C.C or D.C.C on right annihilators; (vii) R is a semi-primary ring.

Lemma 2.11. The following conditions are equivalent: (i) R has a complete set of left triangulating idempotents; (ii) $\{bR \mid b \in S_l(R)\}$ is a finite set; (iii) $\{bR \mid b \in S_l(R)\}$ satisfies A.C.C and D.C.C; (iv) $\{bR \mid b \in S_l(R)\}$ and $\{Rc \mid c \in S_r(R)\}$ satisfies A.C.C; (v) $\{bR \mid b \in S_l(R)\}$ and $\{Rc \mid c \in S_r(R)\}$ satisfies D.C.C; (vi) $\{bR \mid b \in S_l(R)\}$ and $\{cR \mid c \in S_r(R)\}$ satisfies D.C.C; (vii) $\{bR \mid b \in S_l(R)\}$ is a finite set; (viii) R has a complete set of right triangulating idempotents; (ix) R has a complete generalized triangular matrix representation;

Lemma 2.12. If $\{e_1, ..., e_n\}$ is a complete set of primitive idempotents R, then $Tdim(R) \leq n$.

Lemma 2.13. A ring R is prime if and only if is quasi-Baer and semi-central reduced.

Lemma 2.14. A ring R is right p.q.-Baer if and only if whenever I is a principal ideal of R there exists $e \in S_l(R)$ such that $I \subseteq Re$ and $r(I) \cap Re = (1-e)Re$.

Lemma 2.15. The following conditions are equivalent: (i) R is a prime ring; (ii) R is a semi-central reduced quasi-Baer ring; (iii) R is a semi-central reduced p.q.-Baer ring; (iv) R is a semi-central reduced right p.q.-Baer ring.

188

TRIANGULAR MATRIX REPRESENTATIONS OF RING EXTENSIONS

189

Corollary 2.16. Any PWD (piecewise domain) is a quasi-Baer ring.

Corollary 2.17. If ring R is noetherian or artinian ring then R has a triangular matrix representation.

Corollary 2.18. Let Γ be a ring extension of R such that $\Gamma I \subseteq I\Gamma$ for all ideal I of R and whenever $b \in S_l(\Gamma)$, then there exists $b_0 \in R$ such that $b_0 b = b$ and $bb_0 = b_0$. If Γ is prime(resp. left p.q.-Baer) then R is prime(resp.left p.q.-Baer).

Corollary 2.19. If $Tdim(R) \leq \infty$, then if R is prime then R is right p.q.-Baer.

Corollary 2.20. A ring R is prime with Tdim(R) = m if and only if $T_n(R)$ is prime with $Tdim(T_n(R)) = mn$.

Corollary 2.21. The PWP property is a Morita invariant.

Corollary 2.22. Let A and B be semi-central reduced rings. If $T_m(A) \cong T_n(B)$ for some m and n, then m = n and $A \cong B$

Corollary 2.23. The right p.q.-Baer condition is a Morita invariant property.

References

- G. F. Birkenmeier, J. K. Park Triangular matrix epresentations of ring extensions, J. Algebra 265 (2003) 457-477.
- [2] G. F. Birkenmeier, H. E. Heatherly, J. Y. Kim, J. K. Park Triangular matrix representations, J. Algebra 230 (2000) 558-595.
- [3] G. F. Birkenmeier, J. Y. Kim, J. K. Park, Principally quasi-Baer rings, Comm. Algebra 29 (2001) 639-660.
- [4] N. Groenewald A note on extensions of Baer and p.p.-rings, Publ. Linstitute Math. 34 (1983), 71-72.