Tarbiat Moallem University, 20th Seminar on Algebra, 2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 200-203

CATEGORICAL PROPERTIES OF SEQUENTIALLY DENSE MONOMORPHISMS OF SEMIGROUP ACTS

LEILA SHAHBAZ

Department of Mathematical Sciences University of Maraghe Moalleme Shomali Ave. Maraghe, Iran leilashahbaz@yahoo.com (Joint work with Mojgan Mahmoudi)

ABSTRACT. Let \mathcal{M} be a class of (mono)morphisms in a category \mathcal{A} . To study mathematical notions, such as injectivity, tensor products, flatness, one needs to have some categorical and algebraic information about the pair $(\mathcal{A}, \mathcal{M})$.

In this paper we take \mathcal{A} to be the category **Act-S** of *S*-acts, for a semigroup *S*, and \mathcal{M}_d to be the class of sequentially dense monomorphisms (of interests to computer scientists, too) and study the categorical properties, such as limits and colimits, of the pair $(\mathcal{A}, \mathcal{M})$. Injectivity with respect to this class of monomorphisms have been studied by Giuli, Ebrahimi, and the authors and got information about injectivity relative to monomorphisms.

1. INTRODUCTION

Let \mathcal{M} be a class of morphisms of a category \mathcal{A} . To study mathematical notions, such as injectivity and flatness, one needs to have some categorical and algebraic information about the pair $(\mathcal{A}, \mathcal{M})$.

In this paper we take \mathcal{A} to be the category **Act-S** of (right) acts over a semigroup S and \mathcal{M}_d to be the class of sequentially dense monomorphisms, to be defined in section 2, and study the categorical properties of this pair which are usually related to the behaviour of \mathcal{M}_d -injectivity.

In the following we first recall some facts about the category **Act-S** needed in this paper.

Let S be a semigroup and A be a set. If we have a mapping (called the *action* of S on A)

ŀ

$$\begin{array}{rcl} \iota : & A \times S \to A \\ & (a,s) \longmapsto as := \mu(a,s) \end{array}$$

such that a(st) = (as)t for $a \in A, s, t \in S$, we call A a (right) S-act or a (right) act over S.

If S is a monoid with its identity 1, we usually also require that a1 = a for $a \in A$.

²⁰⁰⁰ Mathematics Subject Classification: 08B25, 18A20, 18A30, 20M30, 20M50. keywords and phrases: Sequential closure, sequential dense.

CATEGORICAL PROPERTIES OF SEQUENTIALLY DENSE MONOMORPHISMS $\dots 201$

A homomorphism (or an equivariant map, or an S-map) from an S-act A to an S-act B is a function from A to B such that for each $a \in A, s \in S$, f(as) = f(a)s.

Since the identity maps and the composition of two equivariant maps are equivariant, we have the category Act-S of all right S-acts and S-maps between them.

2. Sequential closure operators

In this section we introduce a closure operator, where the dense monomorphisms resulting from it is the subject of study in this paper. First note that, denoting the lattice of all subacts of an S-act B by SubB, we get:

Definition 2.1. The sequential closure operator $C^d = (C_B^d)_{B \in \mathbf{Act} - \mathbf{S}}$ on $\mathbf{Act} - \mathbf{S}$ is defined as

$$C_B^d(A) = \{ b \in B : bS \subseteq A \}$$

for any subact A of an S-act B.

Now, one has the usual two classes of monomorphisms related to the notion of a closure operator as follows:

Definition 2.2. Let $A \leq B$ be in **Act-S**. We say that A is C^d -closed in B if $C^d_B(A) = A$, and it is C^d -dense (or sequentially dense or s-dense) in B if $C^d_B(A) = B$. Also, an S-map $f : A \to B$ is said to be C^d -dense (C^d -closed) if f(A) is a C^d -dense (C^d -closed) subact of B.

We take \mathcal{M}_d to be the set of all C^d -dense monomorphisms.

As the following result shows, C^d is not idempotent in general.

Theorem 2.3. C^d is idempotent $(C^d_B(C^d_B(A)) = C^d_B(A)$ for all S-acts B and $A \leq B$) if and only if $S^2 = S$.

3. Categorical properties of s-dense monomorphisms

In this section we study some categorical and algebraic properties of the category **Act-S** with respect to sequentially dense monomorphisms. We study the composition, limit, and colimit properties in the following three subsections.

3.1. Composition properties of s-dense monomorphisms. The class \mathcal{M}_d is clearly isomorphism closed; that is, contains all isomorphisms and is closed under composition with isomorphisms. But, unfortunately \mathcal{M}_d is not always closed under composition:

Lemma 3.1. The class \mathcal{M}_d is closed under composition if and only if the C^d -closure operator is idempotent.

Proposition 3.2. The composition of an s-dense monomorphism with a surjective morphism is an s-dense morphism.

LEILA SHAHBAZ

Proposition 3.3. Let $f : A \to B \in Act-S$. Then there are unique (always up to isomorphisms) morphisms $e, m \in Act-S$ such that:

(1) (right \mathcal{M}_d -factorization) f = me with $m \in \mathcal{M}_d$, and

(2) (diagonalization property of the factorization) for any commutative diagram

$$\begin{array}{cccc} A & \stackrel{u}{\longrightarrow} & D \\ e & \downarrow & & \\ & C & \downarrow & g \\ m & \downarrow & & \\ & B & \stackrel{v}{\longrightarrow} & E \end{array}$$

in Act-S with $g: D \to E \in \mathcal{M}_d$, there is a uniquely determined morphism $w: C \to D$ with gw = vm and we = u.

3.2. Limits of s-dense monomorphisms.

Proposition 3.4. \mathcal{M}_d is closed under products.

Proposition 3.5. The class of sequentially dense monomorphisms is closed under \mathcal{M}_d -pullbacks.

Proposition 3.6. The class of sequentially dense monomorphisms is stable under \mathcal{M}_d -pullbacks; in the sense that pullback of any s-dense monomorphism along any morphism is again s-dense.

Proposition 3.7. \mathcal{M}_d is closed under limits.

3.3. Colimits of *s*-dense monomorphisms.

Proposition 3.8. \mathcal{M}_d is closed under coproducts.

Proposition 3.9. \mathcal{M}_d is closed under direct sums.

Proposition 3.10. In Act-S, pushouts transfer s-dense monomorphisms.

Proposition 3.11. The pushout of s-dense monomorphisms belongs to \mathcal{M}_d .

Proposition 3.12. Multiple pushout of s-dense monomorphisms is an s-dense monomorphism. Also, multiple pushouts transfer s-dense monomorphisms.

Definition 3.13. We say that a category \mathcal{A} has \mathcal{M} -bounds if for every set indexed family $\{m_i : A \to A_i : i \in I\}$ of \mathcal{M} -morphisms there is an \mathcal{M} -morphism $m : A \to B$ which factors over all m_i 's; that is there are $d_i : A_i \to B$ with $d_i m_i = m$.

Proposition 3.14. Act-S has \mathcal{M}_d -bounds.

Definition 3.15. We say that a category \mathcal{A} has \mathcal{M} -amalgamation property, if the morphism m in the definition of \mathcal{M} -bounds factors over all m_i 's through members of \mathcal{M} ; that is d_i 's belong to \mathcal{M} .

Proposition 3.16. Act-S has \mathcal{M}_d -amalgamation property.

Proposition 3.17. Act-S has \mathcal{M}_d -directed colimits.

202

CATEGORICAL PROPERTIES OF SEQUENTIALLY DENSE MONOMORPHISMS ... 203

Definition 3.18. We say that a category \mathcal{A} fulfills the \mathcal{M} -chain condition if for every directed system $((A_{\alpha})_{\alpha \in I}, (f_{\alpha\beta})_{\alpha \leq \beta \in I})$ whose index set I is a wellordered chain with the least element 0, and $f_{0\alpha} \in \mathcal{M}$ for all α , there is a (so called "upper bound") family $(g_{\alpha} : A_{\alpha} \to A)_{\alpha \in I}$ with $h_0 \in \mathcal{M}$ and $g_{\beta}f_{\alpha\beta} = g_{\alpha}$.

Proposition 3.19. Act-S fulfills the \mathcal{M}_d -chain condition.

Theorem 3.20. The class of sequentially dense monomorphisms is closed under colimits.

References

- B. Banaschewski, Injectivity and essential extensions in equational classes of algebras. Queen's Papers in Pure and Applied Mathematics, 25 (1970), 131-147.
- M. Mahmoudi and L. Shahbaz, Characterizing semigroups by sequentially dense injective acts, Semigroup Forum 75 (2007),116-128.
- [3] M. Mahmoudi and L. Shahbaz, Well-behaviour of sequential injectivity of acts over semigroups, to appear in Communications in Algebra.
- [4] M. Mahmoudi and L. Shahbaz, Sequential dense essential monomorphisms of acts over semigroups, published online in Applied Categorical Structures.