Tarbiat Moallem University, 20th Seminar on Algebra, 2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 213-216

GENERALIZATIONS OF D_{11} **AND** D_{11}^+ **MODULES**

BEHNAM TALAEE

Department of Mathematics, Faculty of Basic Science University of Mazandaran Babolsar, Iran b.talaee@umz.ac.ir (Joint work with Yahya Talebi)

ABSTRACT. Let M be a module. Then M is called a D_{11} module if any submodule of M has a supplement which is a direct summand of M. Also M is called D_{11}^+ if every direct summand of M is D_{11} . In this paper we investigate generalizations of D_{11} and D_{11}^+ modules, namely δ - D_{11} and δ - D_{11}^+ modules. We will prove that any δ - D_{11} module M has a decomposition $M = M_1 \oplus M_2$ with $\delta(M_1) \ll_{\delta} M_1$ and $\delta(M_2) = M_2$.

1. INTRODUCTION

Throughout this article, all rings R are associative and have an identity, and all modules are unitary right R-modules.

We write $N \leq M$ to denote that N is a submodule of the module M while $N \subseteq^{\oplus} M$ means that N is a direct summand of M. A submodule L of M is called *small* in M (denoted by $L \ll M$) if, for every proper submodule K of $M, L + K \neq M$. A submodule N of M is called *essential* in M (denoted by $N \trianglelefteq_e M$) if $N \cap K \neq 0$ for every nonzero submodule K of M. The *singular* submodule of a module M (denoted by Z(M)) is $Z(M) = \{x \in M \mid Ix = 0 \text{ for some ideal } I \trianglelefteq_e R\}$. A module M is called *singular* (*nonsingular*) if Z(M) = M (resply. Z(M) = 0).

We denote the ring of all endomorphisms of M by End(M) and the Jacobson radical of M by Rad(M). A submodule N of M is called *fully invariant* in M if $f(N) \leq N$ for every $f \in End(M)$.

A module M is called *lifting* (or said to *satisfy condition* D_1) if, for every submodule N of M, M has a decomposition $M = A \oplus B$ such that $A \leq N$ and $N \cap B \ll B$. M is said to *satisfy condition* D_3 if, whenever A and B are direct summands of M with M = A + B, then $A \cap B$ is also a direct summand of M.

For two submodules N and K of the module M, N is called a *supplement* of K in M if N is minimal with respect to the property M = K + N, equivalently M = K + N and $N \cap K \ll N$. The module M is called *supplemented* if every submodule of M has a supplement in M. The module M is called a D_{11} module if every submodule of M has a supplement that is a direct summand

²⁰⁰⁰ Mathematics Subject Classification: 16D70, 16D80, 16D90.

keywords and phrases: D_{11} module, D_{11}^+ module, $\delta - D_{11}$ module, $\delta - D_{11}^+$ module.

BEHNAM TALAEE

of M. Furthermore, M is called a D_{11}^+ module if each of its direct summands is D_{11} .

 δ -small submodules were defined as a generalization of small submodules by Zhou in [4]. Let M be a module and $L \leq M$. Then L is called δ -small in M (denoted by $L \ll_{\delta} M$) if, for any submodule N of M with M/N singular, M = N + L implies that M = N. The sum of all δ -small submodules of M is denoted by $\delta(M)$.

The module M is called δ -lifting (or we say that M has δ - D_1) if, for any submodule N of M, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq N$ and $N \cap M_2 \ll_{\delta} M_2$.

In this paper we investigate generalizations of D_{11} and D_{11}^+ modules, namely $\delta - D_{11}$ modules and $\delta - D_{11}^+$ modules. A module M is called a $\delta - D_{11}$ module if every submodule of M has a δ -supplement that is a direct summand of M. Also M is called a $\delta - D_{11}^+$ module if every direct summand of M is $\delta - D_{11}$.

Let M be any module and $B \leq A$ be submodules of M. Then B is called a δ -cosmall submodule of A in M if $A/B \ll_{\delta} M/B$. A submodule N of M is called δ -coclosed in M if N has no proper δ -cosmall submodule in M, that is, if $B \leq N$ such that $N/B \ll_{\delta} M/B$, then N = B. A submodule A of M is weak δ -coclosed in M if, given $B \leq A$ such that A/B is singular and $A/B \ll_{\delta} M/B$, then A = B. For a submodule N of M, $A \leq N$ is called a δ -coclosure of N in M if A is δ -coclosed in M and $N/A \ll_{\delta} M/A$ and A is called a weak δ -coclosure of N in M if A is weak δ -coclosed in M and $N/A \ll_{\delta} M/A$.

2. $\delta - D_{11}$ modules

Recall that a module M is called a $\delta - D_{11}$ module if any submodule of M has a δ -supplement which is a direct summand of M.

Clearly any D_{11} module is $\delta - D_{11}$ and any $\delta - D_{11}$ module is δ -supplemented.

Lemma 2.1. Let M be a module and $N \subseteq^{\oplus} M$. Then N is weak δ -coclosed in M.

Lemma 2.2. Let M be a module and $A \leq N \leq M$ such that N is weak δ -coclosed in M. Then $A \ll_{\delta} M$ implies that $A \ll_{\delta} N$.

Lemma 2.3. Let M be a module and $A \leq N \leq M$ be such that N is δ -coclosed in M. Then $A \ll_{\delta} M$ implies that $A \ll N$.

A module M is said to have the summand intersection property if the intersection of two summands of M is again a summand of M.

Theorem 2.4. Let M be a δ - D_{11} module and N be a weak δ -coclosed submodule of M. If the intersection of N with any direct summand of M is a direct summand of N, then N has δ - D_{11} . In particular, if M has the summand intersection property, then every direct summand of M has δ - D_{11} .

Corollary 2.5. Let M be a δ - D_{11} module and N be a δ -coclosed submodule of M. If the intersection of N with any direct summand of M is a direct summand of N, then N has D_{11} .

214

Corollary 2.6. Let M be a δ - D_{11} module and N be a weak δ -coclosed (δ -coclosed) submodule of M. If $eN \leq N$ for all $e = e^2 \in End(M)$, then N has δ - D_{11} (D_{11}). In particular any fully invariant δ -coclosed submodule of M has D_{11} .

Theorem 2.7. Any finite direct sum of $\delta - D_{11}$ modules is a $\delta - D_{11}$ module.

Theorem 2.8. Any δ - D_{11} module M has a decomposition $M = M_1 \oplus M_2$, where $\delta(M_1) \ll_{\delta} M_1$ and $\delta(M_2) = M_2$.

The submodule $Z^*(M)$ of M is defined by $Z^*(M) = \{m \in M : mR \text{ is small} in E(mR)\}$ where E(mR) is the injective hull of mR (see for example [1]). We define the submodule $\delta^*(M)$ of M by $\delta^*(M) = \{m \in M : mR \text{ is } \delta\text{-small} \text{ in } E(mR)\}$. Note that if $M = M_1 \oplus M_2$ we have $Z^*(M) = Z^*(M_1) \oplus Z^*(M_2)$ and $\delta^*(M) = \delta^*(M_1) \oplus \delta^*(M_2)$.

Theorem 2.9. Let M be a δ - D_{11} module. Then there exists a decomposition $M = M_1 \oplus M_2$, where $\delta^*(M_1) \ll_{\delta} M_1$ and $\delta^*(M_2) = M_2$.

Lemma 2.10. Let M be a nonzero module and N a fully invariant submodule of M. If $M = M_1 \oplus M_2$, then $N = (N \cap M_1) \oplus (N \cap M_2)$.

Theorem 2.11. Let N be a fully invariant submodule of the module M. If M has $\delta - D_{11}$, then M/N has $\delta - D_{11}$. Moreover if N is a direct summand of M, then N has also $\delta - D_{11}$.

Example 2.12. (1) Let M denote the \mathbb{Z} -module $\mathbb{Z}/6\mathbb{Z}$. The proper nonzero submodules of M are $2\mathbb{Z}/6\mathbb{Z}$ and $3\mathbb{Z}/6\mathbb{Z}$ and we have $\mathbb{Z}/6\mathbb{Z} = 2\mathbb{Z}/6\mathbb{Z} \oplus 3\mathbb{Z}/6\mathbb{Z}$. Hence M is a δ - D_{11} module.

(2) The \mathbb{Z} -module \mathbb{Z} is not a δ - D_{11} module.

3. $\delta - D_{11}^+$ modules

Recall that a module M is called a $\delta - D_{11}^+$ module if every direct summand of M is $\delta - D_{11}$.

By [2, Lemma 2.3], any direct summand of a δ -lifting module is δ -lifting, so any distributive δ -lifting module is δ - D_{11}^+ .

A module M is said to have the *finite exchange property* if, for any finite index set I, whenever $M \oplus N = \bigoplus_{i \in I} A_i$ for modules N and A_i , then $M \oplus N = M \oplus (\bigoplus_{i \in I} B_i)$ for submodules $B_i \leq A_i$.

Lemma 3.1. The finite exchange property is inherited by summands and finite direct sums.

Theorem 3.2. Let $\{N_i\}_{i=1}^n$ be a family of modules with $\delta - D_{11}^+$ and the finite exchange property. Then $\bigoplus_{i=1}^n N_i$ has $\delta - D_{11}^+$.

Example 3.3. Let M denote the \mathbb{Z} -module $\mathbb{Z}/a^i\mathbb{Z} \oplus \mathbb{Z}/a^j\mathbb{Z}$, where a is a nonzero integer and $i, j \in \mathbb{N}$. Then M is a module with $\delta - D_{11}^+$ (see [1, Example 2.16]).

Theorem 3.4. Let M be a module with $\delta - D_{11}$ and D_3 . Then M has $\delta - D_{11}^+$.

BEHNAM TALAEE

Let M be a module and $N \leq M$. Then $A \leq M$ is called an *essential* extension of N if $N \leq A$. A submodule N is called *closed* in M if N has no proper essential extension in M. A submodule B of M is called a *closure* of N in M if B is closed and an essential extension of N in M.

P. F. Smith [3] calls a module M a *UC-module* if every submodule of M has a unique closure in M. Also M is called *extending* if every closed submodule of M is a direct summand of M.

Lemma 3.5. Any UC extending module has D_3 .

Theorem 3.6. A UC extending module M is $\delta - D_{11}$ if and only if it is $\delta - D_{11}^+$.

Theorem 3.7. Let M be a module with D_3 . Then the following conditions are equivalent :

(1) *M* has $\delta - D_{11}^+$.

(2) *M* has $\delta - D_{11}$.

(3) $M = M_1 \oplus M_2$, where both M_1 and M_2 are $\delta - D_{11}$, $\delta(M_1) \ll_{\delta} M_1$, and $\delta(M_2) = M_2$.

(4) $M = M_1 \oplus M_2$, where both M_1 and M_2 have $\delta - D_{11}$, $\delta^*(M_1) \ll_{\delta} M_1$, and $\delta^*(M_2) = M_2$.

References

- A. Harmanci, D. Keskin, and P. F. Smith, On ⊕-supplemented modules, Acta Math., (1999), 83, 161–169.
- [2] M. T. Kosan, δ -lifting and δ -supplemented Modules, Alg. Coll., (2007), 14 (1), 53–60.
- [3] P. F. Smith, Modules for which every submodule has a unique closure, in Ring Theory, World Scientific, Singapore, (1990), 302–313.
- [4] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Alg. Coll. 7 (3) (2000), 305–318.

216