Tarbiat Moallem University, 20th Seminar on Algebra, 2-3 Ordibehesht, 1388 (Apr. 22-23, 2009) pp 219-221

DUAL STABILIZERS AND DUAL NORMAL BCK-ALGEBRAS

L. TORKZADEH

Department of Mathematics
Islamic Azad university, Kerman Branch,
Kerman, Iran ltorkzadeh@yahoo.com
(Joint work with T. Roodbari)

Dept. of Math., Islamic Azad university, Kerman Branch, Kerman, Iran

ABSTRACT. In this note, the notions of dual right and dual left stabilizers of a set in bounded *BCK*-algebras are defined and the relationship between of them are investigated. Then we define a class of special bounded *BCK*-algebras called dual normal *BCK*-algebras. Finally we prove that the dual semisimple bounded *BCK*-algebras and dual *J*-semisimple bounded *BCK*-algebras are all dual normals.

1. Introduction and Preliminaries

The study of *BCK*-algebras was initiated by Y. Imai and K-Iseki [1] in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus. Dual ideals are important in bounded *BCK*-algebras. In 1986, the notion of dual ideals in bounded *BCK*-algebras was introduced by J. Meng [4] and gave certain properties of it. Now, in this paper we define the dual left and dual right stabilizers and dual normal *BCK*-algebras, as mentioned in the abstract.

We give herein the basic notions on *BCK*-algebras. For further information, we refer to the book [3]. By a *BCK*-algebra we mean an algebra (X, *, 0) of type (2,0) satisfying the following axioms: for every $x, y, z \in X$,

(i)
$$((x*y)*(x*z))*(z*y) = 0$$
,

(ii)
$$(x*(x*y))*y = 0$$
,

(iii)
$$x * x = 0$$
,

(iv)
$$x * y = y * x = 0 \Rightarrow x = y$$
,

(v)
$$0 * x = 0$$
.

We can define a partial ordering \leq by $x \leq y$ if and only if x * y = 0. A *BCK*-algebra X is said to be *commutative* if x * (x * y) = y * (y * x), for all $x, y \in X$.

If there is an element 1 of X satisfying $x \le 1$, for all $x \in X$, then the element 1 is called *unit* of X. A *BCK*-algebra with unit is called *bounded*. In a bounded *BCK*-algebra, we denote 1 * x by Nx and $NA = \{Nx \in X \mid x \in A\}$, for all $A \subseteq X$.

A bounded *BCK*-algebra *X* is called *involutory* if NNx = x, for all $x \in X$.

A nonempty subset D of a bounded BCK-algebra X is called a dual ideal if

(i) $1 \in D$, (ii) $N(Nx * Ny) \in D$ and $y \in D$ imply that $x \in D$, for any $x, y \in X$.

Given a bounded BCK-algebra X and a nonempty subset A of X. The intersection of all dual ideals containing A is called the dual ideal generated by A, written [A]. It is proved that $[A] = \{x \in X : (...(Nx*Na_1)*...)*Na_n = 0, for some \ a_1, a_2, ..., a_n \in A\}$. Let A be a nonempty subset of BCK-algebra X. Then the sets $A_1^* = \{x \in X | a*x = a, \forall a \in A\}$

220 L. TORKZADEH

and $A_r^* = \{x \in X | x * a = x, \forall a \in A\}$ are called the left and right stabilizers of A, respectively and the set $A^* = A_I^* \cap A_r^*$ is called the stabilizer of A.

2. Dual stabilizers

In the sequel let *X* be a bounded *BCK*-algebra with unit 1.

Definition 2.1. Let A be a nonempty subset of X. Then the sets

$$DA_l = \{x \in X | Na * Nx = Na, \forall a \in A\}$$

and

$$DA_r = \{x \in X | Nx * Na = Nx, \forall a \in A\}$$

are called the dual left and dual right stabilizers of A, respectively and the set $DA = DA_I \cap DA_r$ is called the dual stabilizer of A.

For convenience the dual stabilizer, dual left and dual right stabilizers of a single element set $A = \{a\}$ are denoted by DS_a , DL_a and DR_a , respectively.

Theorem 2.2. Let X be an involutory BCK-algebra and A be a nonempty subset of X. Then:

(i)
$$N(DA_l) = (NA)_l^*$$
, $N(DA_r) = (NA)_r^*$ and $N(DA) = (NA)^*$,

(ii)
$$N(A_l^*) = D(NA)_l$$
, $N(A_r^*) = D(NA)_r$ and $N(A^*) = D(NA)$.

Theorem 2.3. Let A be a nonempty subset of X. Then DA_l is a dual ideal of X.

The following example shows that DA_r is not a dual ideal in general.

Example 2.4. Let $X = \{0, 1, 2, 3, 4\}$ and let * operation be given by the following table

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
1 2 3	3	0 2 3 3	3	0	0
4	4	3	4	1	0

Then (X, *, 0) is a bounded *BCK*-algebra with unit 4. Consider $A = \{3\}$, it is easy to check that $DA_r = \{1, 4\}$. Now we see that $4*((4*3)*(4*1)) = 4 \in DA_r$ and $1 \in DA_r$ but $3 \notin DA_r$. Hence DA_r is not a dual ideal of X.

Theorem 2.5. Let X be a bounded commutative BCK-algebra and A be a nonempty subset of X. Then $DA_r = DA_l = DA$ and so DA_r is a dual ideal of X.

Theorem 2.6. Let A be a nonempty subset of X. Then

- (i) $[A] \cap DA_r = \{1\},$
- (ii) $DA_r = D[A]_r$,
- (iii) If DA_r is a dual ideal of X, then $DA = DA_r$.

Theorem 2.7. Let A and B be nonempty subsets of X. Then

- (i) $A \cap DA_l = \emptyset$ or $\{1\}$, $A \cap DA_r = \emptyset$ or $\{1\}$ and $A \cap DA = \emptyset$ or $\{1\}$,
- (ii) if $A \subseteq B$, then $DB_l \subseteq DA_l$, $DB_r \subseteq DA_r$ and $DB \subseteq DA$,
- (iii) $A \subseteq D(DA_r)_l \cap D(DA_l)_r$ and $A \subseteq D(DA)_r$
- (iv) $DA_l = D(D(DA_l)_r)_l$, $DA_r = D(D(DA_r)_l)_r$ and $DA = D(D(DA))_r$,

(v)
$$D(A \cup B)_l = DA_l \cap DA_l$$
, $D(A \cup B)_r = DA_r \cap DA_r$ and $D(A \cup B) = DA \cap DB$,
(vi) $DA_l = \bigcap_{a \in A} DL_a$, $DA_r = \bigcap_{a \in A} DR_a$ and $DA = \bigcap_{a \in A} DS_a$.

Theorem 2.8. If A is a dual ideal of X, then DA is a dual ideal of X.

Theorem 2.9. Let A, B be two dual ideals of X. Then $A \cap B = \{1\}$ if and only if $A \subseteq DB$.

Theorem 2.10. Let A be a dual ideal of X. Then $DA_l = DA \subseteq DA_r$. In particular, if DA_r is a dual ideal of X, $DA = DA_l = DA_r$.

3. DUAL NORMAL BCK-ALGEBRAS

Definition 3.1. A bounded *BCK*-algebra *X* is called dual normal *BCK*-algebra, if the dual right stabilizer DR_a of any element $a \in X$ is a dual ideal of *X*.

Note that any commutative bounded BCK-algebra is dual normal BCK-algebra.

Theorem 3.2. *The following statements are equivalent:*

- (i) X is dual normal,
- (ii) $DR_a \subseteq DL_a$, $\forall a \in A$,
- (iii) $DR_a = DL_a$, $\forall a \in A$,
- (v) Nx * Ny = Nx implies Ny * Nx = Ny, $\forall x, y \in X$.

Definition 3.3. A bounded *BCK* -algebra *X* is called dual semisimple if every dual ideal *A* of *X* is a sub-summand of *X*, i.e. there exists dual ideal *B* of *X* such that $A \cap B = \{1\}$ and $X = [A \cup B]$.

Theorem 3.4. Every dual semisimple bounded BCK-algebra is dual normal.

Definition 3.5. The dual J-radical, denoted by DJ(X), of a bounded BCK-algebra X means the intersection of all maximal dual ideals of X. By Zorn's Lemma the collection of maximal dual ideals of X is nonempty. If $DJ(X) = \{1\}$, then X is called dual J-semisimple.

Theorem 3.6. Every dual J-semisimple BCK-algebra is dual normal.

REFERENCES

- [1] Y. Imai and K. Iseki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42(1966), 19-22.
- [2] A. Iorgulescu, *Classes of BCK-algebra-part III*, Preprint series of the institute of Mathematics of the Romanian Academy, Preprint nr.3/2004, 1-37.
- [3] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co, Korea (1994).
- [4] J. Meng, Some results on dual ideals in BCK-algebras, J. Northwest, Univ., 16(1)(1986),12-16.