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ABSTRACT 

 
A chaotic and a fractal measures were calculated for 

Persian speech signal and their performances in speech 
classification were evaluated. The first measure was 
correlation dimension of each frame in speech signal 
which is based on its chaotic characteristics. The second 
measure was fractal dimension computed by fitting 
Hosking’s ARMA filtered FdGn model  [1] to speech 
signal and computing its Hurst parameter by Tewfik’s 
iterative Maximum Likelihood approach  [2]. Experimental 
results showed that, in Persian speech, better classification 
were obtained by Hosking’s model because its ability to 
characterize short term dependencies of speech signal 
which is interpretable by ARMA model.  
 
 

I. INTRODUCTION 
 

In the most commonly used model of speech production, 
speech signal is decomposed into a time varying filter 
component and an excitation component  [3]. The 
excitation is represented by the superposition of two 
sources; periodic pulse train produced by vibration of the 
vocal cords and white Gaussian noise produced by forcing 
air past some constriction in the vocal tract. But this model 
lacks of the ability to observe the long term dependencies 
observed in speech signal because of its ARMA statistical 
model  [2]. In other words, it has been observed that by 
assumption of white noise excitation we cannot interpret 
long term dependencies in speech signal. 

Because of the ability of fractal models to observe the 
long term dependencies in signal and also the nonlinear 
dynamics of its source via chaotic Lyapanov exponent, 
fractal models come to play a significant role from 10 
years ago  [4]. Results of experiments have shown that the 
Hausdorf dimension of speech signal is strictly larger than 
its geometric dimension, especially in voiced and unvoiced 
fricatives  [5]. 

Correlation dimension was applied to estimate and 
evaluate chaotic characteristics of speech signal. 
Experimental results showed strong chaotic characteristics 
in Persian speech signal. However this model seems to just 
observe the long term dependencies in speech signal and it 
cannot discover short term dependencies of speech signal 
which was found out by poles and zeros of ARMA model. 

Therefore, the existence of a model to catch both the long 
and short dependencies in speech signals appears to be 
necessary. 

To solve this problem, Fractionally Brownian Motion 
(FBM) model is introduced by Mandelbrot and Ness  [6]. In 
contrast with ARMA models which are characterized by 
correlation function that decay exponentially with the lag, 
FBM signals with -type spectra have a correlation 
function that decreases hyperbolically fast with the lag 

as   [2].  

f/1

k αk
Because FBM is a non-stationary model, its derivative 

called Fractionally differenced Gaussian noise (FdGn) is 
applied to speech. But the FdGn model seems not to 
discover the short term dependencies of speech signal 
which could be found out by poles and zeros of ARMA 
model. Hosking  [1]solved this problem by presenting the 
FdGn AR filtered model. In this model, the Gaussian 
excitation source is not assumed to be white at all, but it 
can also have weak dependencies between far samples. In 
this way, we also applied Hosking’s model to speech 
signal in order to catch its short term dependencies. In 
order to compute model’s parameters, we used the iterative 
method of Tewfik  [2] which searches for a local optimal in 
log likelihood surface of model parameters.  

Finally, we evaluate these two approaches in Persian 
speech classification and experimental results showed 
better classification of speech sounds by ARMA filtered 
FdGn Model than Correlation Fractal Dimension approach. 

This paper is arranged as follows. In section II, we 
review correlation dimension. ARMA filtered FdGn model 
is discussed in section III. In section IV, the experimental 
results of applying these two approaches on Persian speech 
signal are explained.  

 
II. CORRELATION DIMENSION 

 
Turbulence in air pressure yields to a chaotic behavior 

and strange attractor trajectory of speech signal. One way 
to investigate the chaotic characteristics of vocal tract is to 
observe the trajectory of the system state variables. As we 
know in the case of stable systems the trajectory converges 
to a special point in state space, while in unstable systems 
the trajectory diverges to infinity and in quasi periodic 
systems the trajectory converges to a cycle. But in the case 
of a strange attractor the trajectory moves in a closed space 
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and doesn’t converge to any point or cycle. Therefore, the 
trajectory seems to cover a thick and complex curve in 
space which means its Hausdorf dimension should be 
strictly greater than its geometric dimension. This system 
is fractal by Hausdorf’s definition. So we can evaluate the 
characteristics of the chaotic system by evaluation of its 
trajectory’s fractal dimension. But as we know, our input 
signal is a one dimensional signal which is yielded by a 
projection of trajectory curve and it is insufficient to get 
the trajectory curve. However, Takens’ theorem  [5]says 
that one dimensional time series can characterize a strange 
attractor having a degree of freedom F>1. The main 
requirement is that the time series must be sufficiently long 
according to the F (geometric dimension of state space).   

The technique is based on construction of the state 
vector  using the elements of the given time series. 

Given a time series , we can construct  according to  
iX

ix iX
),...,,( )1( JmiJiii xxxX −++=  

where J is called lag or construction delay, and m is called 
embedding dimension. Takens suggested to use m>2F, 
however this estimation works for even smaller values  [5]. 
However since state space variables are minimum number 
of variables describing a system, the value of J should be 
increased if cross correlation between entities of  is 

high.  Having the vector , we can find fractal dimension 
for any value of m. If the value of m is taken correctly, the 
value of computed fractal dimension is less than its 
embedding dimension (m). But in other cases the computed 
fractal dimension is greater than embedding dimension and 
so the value of m, embedding dimension, should be 
increased. 

iX

iX

Now we present the correlation dimension of a 
trajectory. Let  be i’th state space vector, then we 
define correlation sum as follows: 
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where || is defined as the general norm function of vectors 
and functionθ  is defined as: 
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So C(r) counts the number of vector pairs which have a 
distance less than r. As r decreases, the value of C(r) is 
also decreased. But the behavior of C(r) can be studied by 
using a quality: 
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 Fig. 1: Diagram of FdGn ARMA filtered model 

If the value of v is chosen large,  tends to infinity, 

and if the value of v is chosen small,  tends to 

zero. However there exists a critical value of  
which we have: 
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CD  is defined as correlation dimension and could be 
obtained using: 

)log(
))(log(lim

0 r
rCD

rc →
=  (2.6) 

So in the case of a highly correlated signal, distance 
between vector pairs is small and hence we expect C(r) to 
decrease slowly as r decreases and we obtain a small value 
of fractal dimension. But when the signal, the vector 
difference is not small and so we expect C(r) to decrease 
faster as r decreases and thus we get a greater value of . 
So according to this theorem, we should obtain a larger 
correlation fractal dimension for fricatives with more 
unvoiced characteristics. 

CD

(2.1) 

Here, we applied an AR filter of degree 10 before 
computation of correlation dimension in order to eliminate 
the effect of linear part of vocal tract filter. For evaluation 
of the coefficients of AR filter, the Levinson’s Minimum 
Mean Square algorithm is used. In this algorithm a filter in 
form of 

( )
∑ =

−
= K

i
i

i za
zH
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 (2.7) 

is fitted to the input speech signal so that the power of the 
signal which is obtained by inverse filtering through 1/H(z) 
is set to minimum value. 

 (2.2) 
III. FdGn ARMA FILTERED MODEL 

 
III.A. Mathematical Background: 
 
As shown in figure 1, the output of an ARMA filtered 

FdGn model is built of a composition of ARMA filtering 
and an FdGn filtering on white noise.  The FdGn process 
can be defined as  fractional difference (or 
summation) of discrete time white Gaussian noise 
( ):  
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(3.1) 
( )
( )zA
zB

where is white Gaussian noise. The continuous form 
of FdGn also can be defined as derivative of FBM: 

][nw
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)()( tx
dt
dtx FBMFdGn =  

where FBM is defined as a zero mean Gaussian process 
with the following correlation property : 

( ){ } H
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H is the Hurst parameter and is related to with 
. In the case of  general Brownian 

motion would be obtained. Equation (3.3) implies the 
value of variance and autocorrelation matrix of FBM 
process: 
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According to figure 1, we can conclude that FdGn is a 
zero mean Gaussian Process with correlation function of  
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Note that approximation of equation 3.5 is true just for 
large values of k. The Power Spectrum of FdGn is also 
computable using figure 1 as follows: 
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As we observe in equation (3.5), correlation function of 
FdGn process decays hyperbolically and slowly, hence we 
can pursue the long term dependencies of any signal by 
this model. In other way, the ARMA Power Spectrum 
function is a summation of expressions in the form of 

ϖ
ω

jn
n

n
j ea

ae
−∞

=− ∑=
− 01

1  . So correlation function 

of an ARMA model decays exponentially and so fast and 
is unable to pursue long term dependencies of the signal.   

In  [6] [2], Tewfik explained two iterative methods for 
estimation of parameters of ARMA filtered FdGn model: 
first algorithm is an EM (Expectation Maximum) 
algorithm which is based on an iterative method to find the 
Maximum Likelihood point of the probability space and 
the second algorithm is based on an iterative 
approximation method.  The EM approach contains a more 
vast computational complexity and is not suitable for a 
long frame signal like speech therefore we just review and 
implement the second iterative method. 

Before following on the Tewfik’s algorithm, we first 
derive the log likelihood function of an observed data 
based on the Hurst parameter and variance of a simple 
FdGn process. After that we will discuss the problem of 
Maximum Likelihood Estimation (MLE) of general FdGn 

process according to observations and finally we will apply 
algorithm to problem of FdGn ARMA filtered parameters 
estimation. 

(3.2) 

Notice that according to the Gaussian property of FdGn, 
probability density function of an N member observed 
vector x of samples of an FdGn process is given by: (3.3) 
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where R can be obtained using equation 3.5. Now we 
define: 
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Since the logarithm is a monotone function, so for 
maximum likelihood point search, it is sufficient to find 
the maximum logarithm likelihood point. So we have: 
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(3.5) 

(3.9) 

Now we explain Tewfik’s algorithm  [8]for obtaining log 
likelihood value by a complexity of .  )( 2NO

 
III.B. Tewfik’s Maximum Likelihood Estimator (MLE) of 

 and d of General FdGn 2σ
(3.6) 

 
ML estimators are asymptotically unbiased and efficient. 

However in most cases it is difficult to find a closed form 
for the MLE in terms of a given data. Instead numerical 
methods such as Newton’s method or Maximum Descent 
Algorithm should be applied to find the value of 
parameters which maximize the likelihood function  [8]. By 
derivation with respect to sigma from equation (3.9), we 
obtain the value of variance for the optimum point as 
follows  [8]: 

xdRx
N

T )(1ˆ 1
1

2 −=σ  (3.10) 

Applying equation (3.10) into equation (3.9) yields 
equation (3.11) and (3.12) which should be maximized: 
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(3.11) 

(3.12) 

Now since the correlation matrices R1 and R2 are 
symmetric Toeplitz matrix, we can decompose them with 
respect to Levinson’s algorithm and parameters of LPC for 
the coefficients of autocorrelation function which is 
defined as: 
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For detailed proof of obtaining these values from 
Levinson’s algorithm you can refer to  [8].  

Therefore, R1   can be decomposed as 
 where A is a lower triangular 

matrix defined as  
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and P is in the form of a diagonal matrix 
 where P{ 1210 ,...,,, −= NPPPPdiagP } k is defined as: 
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So equation (3.12) could be computable according to 
equations (3.13) and (3.15): 
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As we observe in equation (3.16) and (3.17), the value of 
equation (3.12) is computable with a computational 
complexity of  which is so faster than other known 

algorithms with complexity of  [8] [7] [5]. So we 
can estimate d with any resolution by computation of log 
likelihood function for each value of d and applying a 
heuristic method like Maximum Descent Gradient (MDG) 
algorithm. After that we can estimate corresponding 
variance of FdGn using equation (3.10). Now we review 
Tewfik’s iterative approach MLE of FdGn ARMA Filtered 
model’s parameters estimation. 

( 2NO )

)

)( 3NO

 
III.B. Tewfik’s Approximate Iterative Algorithm for 

ARMA filtered model Parameters Estimation 
 
In this algorithm, an initial value for ARMA filter’s 

parameters, Hurst parameter and variance is selected. Then 
in k’th step, the observed vector, y[n], is filtered by inverse 

of ARMA filter whose parameters are 
 to obtain  

and then according to ML algorithm described in III.A, we 
find the new values and   for FdGn model. Then 
we apply the inverse of FdGn filter with respect to 

and to observe input vector, y[n], and to obtain 

.Then according to Levinson’s algorithm, we find 

new values  of 
parameters of ARMA model. The algorithm stops at k’th 
step, if the difference norm of vector parameters between 
two consecutive steps becomes less than a predefined 
value, that is: 

QjPijbia kk ≤≤≤≤ 1,1);(),( )(nzk
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(3.13) 

(3.14) 

( ) ( εσσ <−++++ kkkkkkkk HjbiaHjbia ,),(),(,),(),( 1111  
No theoretical proof on computational complexity of this 

method has been found yet  [2].  (3.15) 
 

IV. EXPERIMENTAL RESULTS 
 

For performance evaluation of two approaches explained 
in this paper, a database of Persian speech files recorded 
from a male speaker, sampled at 8KSample/Sec and 
quantized by 16 bits were used in speech classification. For 
implementing models, speech signal was divided into 
20msec frames in order to take the AR and ARMA filter on 
it. Numerical results proved the best window size for 
taking FdGn and correlation dimension is 60msec (480 
samples).  

(3.16) 

(3.17) 

Numerical results of applying correlation dimension are 
shown in figure 2. Because estimated correlation 
dimension (CD) of each Persian consonant is not a 
constant value at all and is a stochastic value changing 
from frame to frame, we estimated the mean value and 
variance of CD of each Persian consonant over all frames 
in our database and then we fitted a Gaussian function to 
our estimated mean value and variance of each consonant 
as shown in figure 2.  

 

 
Fig.2: Probability density function of estimated embedding 

correlation dimension of several consonants

 Prob. 
 Density 
 Function 

 Estimated Embedding CFD(Correlation Fractal Dimension 
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Also as we observe in figure 2, all the estimated CDs are 
less than 10 and CDs of several consonants are not 
distinguishable at all. However some of them like CD of 
“s” (س) which has a mean=9 and variance=0.2 and CD of  
“z” (ز) which has a mean=5.92 and variance=0.3 are 
completely distinguishable. This phenomenon can be 
explained theoretically; “z” and “s” have an almost 
identical vocal tract filter but vocal cords in “z” have a 
more important role and hence “z” is a more voiced 
consonant. As we see, the algorithm fails in discriminating 
several consonants from each other.  

 
 
For applying FdGn AR filtered model, we chose several 

values for degree of AR filter and evaluated the d 
estimated curve versus time for several values of degree of 
AR filter, as figure 3 shows, and finally selected the 
minimum degree value which there is a little difference 
between its d-curve and d-curve of AR models with greater 
degree values as the optimal AR degree. As an example as 
figure 3 shows, AR(3) is not sufficient for modeling 
speech signal. Finally we concluded that AR(10) is totally 
sufficient for modeling the transient variations of speech 
signal.  
 

 

Like estimated CFD, the estimated mean value and 
variance of d parameter of each consonant are used to fit a 
Gaussian function to probability density function of d 
parameter of each consonant. The results are plotted in 
figure 4. By evaluation of figures 2 and 4, we observe 
better discrimination between various consonants is 
obtained by applying AR Filtered FdGn model than CFD 
approach. The result is some how predictable. Because of 
using AR filter in AR Filtered FdGn model, it has the 
ability to pursue both the short term and long term varieties 
in speech signal and so is more perfect in speech modeling. 

 
Fig.3: the d parameter versus time is plotted for FdGn AR Filtered 

model of degree5 (Red Curve) 3 (Green Curve) and Speech signal 
(Blue Curve) during the pronunciation of a sentence. 

 
V. CONCLUSION 

 
The chaotic and fractal characteristics of Persian speech 

signal are evaluated. Experimental results showed that the 
correlation dimension of speech signal is strictly greater 
than its geometric dimension which proves the strong 
chaotic characteristics in Persian speech signal. Finally, 
FdGn AR filtered approach and CFD approach in speech 
consonant recognition were evaluated against each other 
and as experimental results showed FdGn AR filtered 
approach yields better results in distinguishing Persian 
speech consonants. 

Speech 
Signal, 
Hurst 
Param. 

Time (msec) 
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