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Abstract 
Evoked Potentials (EPs) are time varying signals buried in large background noise. In order to detect and extract 
Visual Evoked Potentials (VEP) in real time, we use the fourth order cumulant of the observed noisy signal in an 
adaptive filter. The noisy signal is passed through a Finite Impulse Response (FIR) filter whose impulse response is 
matched with the shape of the noise-free signal. The impulse response of the said filter is estimated using the fourth 
order cumulant of the input signal. We also use a method to recursively utilize fourth order cumulants of the input 
signal for updating the coefficients of the adaptive FIR filter. This enables us to extract the VEP signal in real time. 
We show that the fourth order cumulant based method provides better results in comparison to the conventional third 
order cumulant based method and both yield better results as compared to the widely used autocorrelation function. 
 
     Key Words─ Visual Evoked Potentials, Higher-Order-Statistics, Adaptive Methods, Colored 
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1.  INTRODUCTION 
ISUAL evoked potentials (VEPs) represent the 
gross electrical activity of a specific region of the 

brain usually resulting from a visual stimulation. Like 
other types of evoked potentials, the raw VEP is 
corrupted by noise as a result of the on-going activity of 
the brain cells. Signal-to-Noise Ratios (SNRs) of the 
raw VEPs are often less than 0.0 dB [4]-[8]. Ensemble 
averaging and weighted ensemble averaging have been 
widely used to extract evoked potentials from a noisy 
background [5]-[6],[8]. It has been shown that evoked 
potentials are non-stationary and therefore have 
characteristics that vary across stimuli [5],[7]. Thus, 
averaging methods fail to track dynamic changes that 
take place both in the latency and in the amplitude of 
the evoked potentials. Furthermore, averaging methods 
need a large number of records to obtain a suitable 
estimate of the EP. Classical filtering with known and 
fixed bandwidths is not usable for SNR enhancement of 
VEPs, as the spectrum of VEPs and the EEG overlap 
[5]. 

Adaptive filters have been extensively used for 
estimation of evoked potentials [1]-[3],[6]-[10]. They 
can track dynamic variations of EPs and reduce the 
noise that is uncorrelated with the underlying signal. 

The performance of an adaptive filter greatly depends 
on its reference signal, several of which have been used 
to extract evoked potentials. Vaz and Thakor [1] used a 
finite number of sine and cosine functions as the 
reference in the time domain. Laguna et al. [2] set the 
reference input as a unit impulse sequence; the onset of 
each is synchronized with the beginning of a 
corresponding epoch. This is based on the fact that EPs 
are responses that are time-locked to the stimulus. In 
order to establish the validity of results, one should use 
a known reference and show that the outcome (i.e., the 
constructed reference signal) closely matches the signal 
of interest. Furthermore, such filters are effective when 
noise is additive white Gaussian (AWGN). However, if 
noise is colored, the adaptive filter’s impulse response 
is affected by the cross-correlation of the signal and 
colored noise, and its output contains noise as well as 
the signal [9]-[10].  

In order to do this, during the past decade various 
methods have been developed in which higher-order-
statistics (HOS or cumulants) are used for signal 
detection in Gaussian noise. The main advantage of 
using higher-order statistics is their insensitivity to the 
colored Gaussian noise. This is because higher-order-
statistics of the Gaussian noise (white or colored) are 
identically zero [11]-[18]. Such approaches have been 
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developed for harmonic retrieval [13], spectral 
estimation [14], [17], and line enhancement [15]. 
Gharieb et al. in [18] estimated the impulse response of 
the FIR matched filter by using a selected slice of the 
third order correlation of the input noisy signal. In [19] 
we presented a framework for using higher-order 
statistics for detection of transient signals embedded in 
Gaussian noise. Here, we apply the same to extract 
VEPs to demonstrate the usefulness and applicability of 
our approach.   

In this paper we use a selected slice of the fourth 
order cumulant of the noisy signal to estimate the 
impulse response of the FIR matched filter, instead of 
using the third order correlation in [18]. We will show 
that the fourth order cumulant based method yields 
better results compared to the second and the third 
order correlation based methods. The results are clearly 
better than that of [18]. We also use a method to 
recursively utilize higher-order statistics of the input 
signal for updating the coefficients of an adaptive FIR 
filter. This enables us to extract the signal in real time, 
and improves the SNR at the output of the filter as 
compared to the use of third order correlation in [18]. 
Simulation and experimental results show that the 
proposed method is effective in real time tracking of 
VEPs and their variations.  

The rest of the paper is organized as follows. In 
Section 2 we define the problem and briefly present the 
background material on HOS relevant to this work. In 
Section 3, we explain the algorithm. In Sections 4 and 
5, we present simulation and experimental results, and 
the conclusions, respectively. 

2.  PROBLEM STATEMENT AND BACKGROUND 
MATERIALS 

A. Problem Statement 
We wish to extract a VEP signal s(n) from a noisy 
observation x(n). The signal s(n) is modeled as sum of 
P exponentially damped sinusoids [18]-[21], and is 
contaminated by additive colored Gaussian noise v(n) 
of zero mean and unknown covariance, i.e., 
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where kα  is the amplitude, kξ  is the damping 

coefficient, kω  is the frequency, and kϕ  is the phase 
of the kth sinusoid respectively, and T is the sampling 
time. We assume that P, kα , kϕ , kξ  and kω are 
unknown constants, and v(n) is a zero-mean additive 

noise statistically independent of s(n). We further 
assume that v(n) is the output of a stable, linear time-
invariant (LTI) filter driven by independent and 
identically distributed (i.i.d.) random variable with 
Gaussian distribution and bounded higher-order 
statistics. Given a finite data length, the problem is to 
extract s(n) from x(n). 

B. Fourth Order Cumulant  
For ease of reference, we repeat some background 
material presented in [12] on the fourth order cumulant. 

Cumulants may be defined as the coefficients in the 
Taylor series expansion of the log of the characteristics 
function of a random process, expanded about the 
origin. The fourth-order cumulants of a stationary zero-
mean process  is  )(tx
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where ),...,( 11 −kkxc ττ  is the cumulant of the kth order. 
     For a finite length deterministic signal x(n), 
n=0,…N-1, the kth order moment is 
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where  is twice the value of the highest-order 
cumulant of interest. Given a sample sequence x(n), 
n=0,…,N-1 for , and as stated in [11], the 
estimate of fourth-order cumulant is  
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where is the deterministic k(.)kxm th order moment of 
x(n).  

Now we consider several properties of the cumulants. 
It is shown in [12] that for any Gaussian v(n) of 
unknown covariance, we have 
                  0),...,( 11 ≡−kkvc ττ       for all k>2              (6) 

Cumulants are additive, so the cumulant of the sum is 
equal to the sum of the cumulants. This implies that if 
noise is added to the signal as in (1), we have 
   ),...,(),...,(),...,( 111111 −−− += kkvkkskkx ccc ττττττ   (7) 
Furthermore, we use (6) to write  
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              ),...,(),...,( 1111 −− = kkskkx cc ττττ            (8) 
and use (8) to improve the signal-to-noise ratio (SNR) 
when noise is additive Gaussian. 

3. METHOD 
In order to extract VEPs, we use a one-dimensional 
slice of the fourth order cumulant of the noisy signal to 
estimate the impulse response of an FIR matched filter. 
We show that the use of fourth-order cumulant yields a 
better SNR as compared to the widely used second-
order correlation and also as compared to the third 
order cumulant in [18].  As in [22], we utilize a 
matched filter whose impulse response is  
                      (9) 10      )1()( −≤≤−−= NnnNsnh
where N is the length of s(n). Since s(n) is the unknown 
VEP, we obtain its estimate by utilizing the higher-
order statistics of the noisy signal. We use a one-
dimensional slice of the cumulants by setting ττ =1  
and 0=iτ for , and write 11 −≤< ki
                         )0,...,0,(ˆ)( ττ ksch =                          (10) 
For convenience, we use the simple notation )(ˆ τksc  to 
represent )0,...,0,(ˆ τksc . Now, we compute the impulse 
response of the filter as  
              PPch kx 2,...,1,0       ),(ˆ)( =−= τττ                (11) 
where P is the order of the matched filter. Eq. (11) 
implies that the length of the impulse response is 2P+1. 
To obtain the impulse response, we need to estimate 
P+1 samples of the cumulant using the estimator in (5). 
A symmetrical impulse response implies a causal filter.  

For real time tracking of the signal, we use the 
following recursive algorithm to estimate the cumulant 
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where K,..,1,0=τ , and 10 <≤ λ  is the so-called 
forgetting factor. Small values of λ  yield fast tracking 
but poor smoothing, and large values result in slow 
convergence but better smoothing. The absolute sign in 
(12) is to avoid negative values in higher order 
cumulants. Fig. 1 shows a block diagram of the open 
loop, cumulant based adaptive filter.  

4.  RESULTS 
A. Artificial VEP  
To demonstrate the effectiveness of our proposed 
method, we use an artificial VEP constructed from (1). 
The s(n) in (1) is a noise free damped sinusoid as  

 ))003.0( 2cos(1.0()99.0(5.11.)( 612 nns n π++−= −   (13) 
the duration of which is 500 msec, and is sampled at the 

 
Fig. 1 - Block diagram of the adaptive filtering scheme 

rate of 4 kHz, i.e. the sequence length N is 2000. Fig. 
2(a) shows s(n) vs. time, and Fig. 2(b) shows its power 
spectrum. We also generate v(n) in (1) as 
                                                  (14) )()()( ngnznv +=
where z(n) is the white Gaussian noise and g(n) is the 
colored Gaussian noise generated by passing the white 
Gaussian noise through a 6th order band-pass 
Butterworth IIR filter with cutoff normalized 
frequencies of 0.04 and 0.08. Figs. 2(c) and 2(d) show 
v(n) vs. time and its power spectrum respectively. Figs. 
2(e) and 2(f) show the noisy signal with SNR = -10 dB, 
and its corresponding power spectrum respectively.  

We consider a single VEP epoch embedded in 
colored Gaussian noise shown in Fig. 2(e), and use a 
non-adaptive matched filter (Eq. 11) that utilizes the 
second, the third and the fourth order cumulants of the 
input noisy signal. The results are shown in Fig. 3. We 
set the order of the matched-filter to P=28. Fig. 2(f) 
shows that the power of white noise in noisy signal is 
about -10 dB and the power of colored noise is about 
+10 dB.  

Fig. 3(a) shows the enhanced signal vs. time using 
the conventional autocorrelation based method and Fig. 
3(b) shows its corresponding power spectrum. In Figs. 
3(c) and 3(d) the enhanced signal in the third-order 
cumulant based method and its corresponding power 
spectrum are shown. The output of the fourth order 
cumulant based filter and its corresponding power 
spectrum are shown in Figs. 3(e) and 3(f) respectively. 

In autocorrelation based approach, we obtain about 
10 dB attenuation in the power of white and colored 
noise. For the third order cumulant based method we 
obtain about 20 dB attenuation for the white noise and 
15dB for the colored noise power. In the fourth order 
cumulant based method, 30 dB attenuation for the 
power of white noise and 20 dB attenuation for the 
power of colored noise is achieved.    

Now we apply the autocorrelation based, the third 
order cumulant based and the fourth order cumulant 
based adaptive approaches to a quasi-periodic version 
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of the noisy VEP in Fig. 2(e). The SNR for quasi-
periodic noisy VEP at the input is –10 dB. The results 
are shown in Fig. 4 for two matched filters with orders 
P=32 and 64. Note that the fourth order cumulant based 
(adaptive) (Fig. 4) and non-adaptive (Fig. 3)) 
approaches yield better results as compared to the 
autocorrelation-based and to the third order cumulant 
methods. Furthermore, the fourth order cumluant based 
adaptive method enables us to extract the VEP in real 
time. It is evident from Fig. 4 that increasing the order 
of the matched-filter from 32 to 64 yields a better SNR. 

B. Real VEP Acquisition and Processing 
Now we apply our proposed method to extract the VEP 
from actual recording of human subjects. The subjects 
are males, between 19 and 23 years old, and without 
any visual disorders. We use Nicolet 1050 instrument 
for recording signals, and apply a simple grating pattern 
shown in Fig. 5 for stimulation, which has 100% 
contrast and 2 cpd (cycle per degree) spatial frequency. 
The VEP is recorded by using 3 electrodes that are 
placed on the scalp in visual cortex in 10-20 system (the 
active electrode on , the ground electrode on  and 
the reference electrode on ) as in [23]. Fig. 6(a) 
shows the recorded VEP and Fig. 6(b) shows its 
corresponding power spectrum. Each epoch has 512 
samples with duration of 250 msec and sampling 
frequency of . 

zO zC

PzF

kHz 2=sf
 
 

The results for the fixed matched-filter with P=40 are 
shown in Fig. 7. It is evident that the SNR in the fourth 
order cumulant based approach is improved compared 
to both the autocorrelation and the third order cumulant 
based methods, and the third order cumulant based 
method yields better results as compared to the 
autocorrelation based method. 

Now, we apply our adaptive filter with P= 40 
and 9995.=λ . The results are shown in Fig. 8 for the 
autocorrelation, the third order cumulant, and the fourth 
order cumulnat based methods. It is evident that the 
results are improved as compared to the non-adaptive 
approaches in Fig. 8. It can also be seen that the higher 
order statistics based adaptive filtering achieves better 
results as compared to the autocorrelation based 
adaptive filtering. The results for the third order 
cumulant and the fourth order cumulant based methods 
are close to each other in this case. 

5. CONCLUSION 
We developed an adaptive filter in which we use higher 
order statistics to detect VEPs on line. The fact that our 
proposed method is capable of extracting VEPs on line 
is important in detecting VEP anomalies in each epoch, 
as compared to other methods that in effect average out 
the VEPs over the entire epochs.  

We have shown that the SNR is also improved 
significantly as compared to other existing methods. 

 
   

 
Figure 2- (a) The noise free signal; (b) The power spectrum of (a); (c) The additive noise; (d) The power spectrum of (c); (e) The 
input noisy signal; (f) The power spectrum of (e). 
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Figure 3- The output of the non-adaptive matched filter with the order P=28, (a) The output of the autocorrelation based filter; 
(b) The power spectrum of (a); (c) The output of the third order cumulant based filter; (d) The power spectrum of (c); (e) The 
output of the fourth order cumulant based filter; (f) The power spectrum of (e). 

 

 
Figure 4- The output of the adaptive filter, (a) The output of the autocorrelation based adaptive filter for P=32; (b) The output of 
the autocorrelation based adaptive filter for P=64; (c) The output of the third order cumulant based adaptive filter for P=32; (d) 
The output of the third order cumulant based adaptive filter for P=64; (e) The output of the fourth order cumulant based adaptive 
filter for P=32; (f) The output of the fourth order cumulant based adaptive filter for P=64.   

 

 
Figure 5- Grating stimulation pattern used for generating the VEPs. 
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Figure 6- (a) Recorded VEP; (b) The power spectrum of (a). 

 
Figure7- The output of the non-adaptive filter with the order P=40 for real VEP data, (a) The output of the autocorrelation based 
filter; (b) The power spectrum of (a); (c) The output of the third order cumulant based filter; (d) The power spectrum of (c); (e) 
The output of the fourth order cumulant based filter; (f) The power spectrum of (e). 

 
Figure 8- The output of the adaptive filter for P=40 and 9995.=λ , (a) The output of the autocorrelation based adaptive filter; 
(b) The power spectrum of (a); (c) The output of the third order cumulant based adaptive filter; (d) The power spectrum of (c); (e) 
The output of the fourth order cumulant based adaptive filter; (f) The power spectrum of (e). 
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