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Abstract:  
Context-based lossless image compression schemes use 180° type modeling contexts in one pass 
scanning an image. In this paper, a lossless image compression (LIC) scheme is introduced and for 
capturing high-order dependencies, statistical features and spatial configuration of an image, three-
pass scheme with 360° type modeling contexts is proposed. Linear and nonlinear relationships 
between pixels in a context are used for context determination. Also the three-pass algorithm is 
applied to JPEG-LS standard, and for context determination, local gradients of intensity capturing the 
level of activity (smoothness, edginess) surrounding a pixel, is employed. For images with small 
dimensions three-pass schemes and for large dimensions one-pass schemes result in higher 
compression ratios. 
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1. Introduction  
An image compression scheme consists of two 
components, an encoder and a decoder. The 
encoder takes an uncompressed image and 
encodes it into a more compact format. The 
decoder performs the opposite actions of the 
encoder; it takes the encoded image and attempts 
to reconstruct the original uncompressed image. 
This process will either be lossless, near lossless 
or lossy, which will be determined by the 
particular needs of the user. The two methods of 
lossless and near-lossless image compression 
both deal with the value or brightness of each 
individual pixel. 

Lossless compression guarantees that the value 
of each pixel in the reconstructed image will 
match its corresponding original value. When 
near-lossless compression is used, the 
reconstruction process may introduce errors in 
the reconstructed values, the maximum 
magnitude of these errors can usually be limited 

by the user. Rather than deal with the value of 
every pixel, lossy compression schemes attempt 
to determine visually important components of 
an image. By maintaining visually important 
information, the reconstructed image has a 
similar “look” to the original. By throwing away 
visually unimportant information, the level of 
compression can be improved. Recent lossless 
compression schemes have mostly been 
composed using a two-stage process involving 
prediction and coding.  
 
1.1 Prediction 
It is assumed that an image is scanned using a 
raster-scan technique, that is to say the pixels are 
scanned from left to right, top to bottom. 
Therefore, at any time instant t it is assumed that 
all the previous pixels x0x1…xt-1 have been 
scanned. Both the encoder and the decoder scan 
the image in the same way. Therefore, if the 
encoder is encoding xt, then it can assume that 
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the decoder has decoded the pixels x0x1…xt-1. 
The common scanning method used by both the 
encoder and decoder allows the value of xt to be 
predicted in the same way by the encoder and 
decoder. The pixels that are used for this 
prediction cause the predictor to predict in a 
certain way, thus they are referred to as the 
causal neighborhood. 
 
1.2 Static Prediction 
The first step is to use a fixed prediction function 
that predicts the value of the current pixel. An 
example of a prediction function is the Median 
Adaptive Predictor, is presented below [1].  
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Another way of expressing this predictor is to 
say it returns the median of three N, W, N+W-
NW. Its adaptive nature and low complexity give 
a good tradeoff between accuracy and speed. 
 
1.3 Adaptive Correction 
Once a predicted value is obtained from the 
static predictor(s), a scheme can perform 
adaptive correction on that prediction. This stage 
is more open to the implementers to experiment, 
however there are a few common methods. The 
most straightforward method is to correct the 
predicted value by the current mean predicted 
value. This tends to involve “learning" the 
behavior of the prediction errors over time. 
Depending on the state of knowledge at that 
particular time, the encoder and decoder can 
correct the predicted value based on previous 
observed behavior. 
 
2. TSGD Model 
It is a widely accepted observation [2] that the 
global statistics of residuals from a fixed 
predictor in continuous-tone images are well 

modeled by a TSGD (two-sided geometric 
distribution) centered at zero. According to this 
distribution, the probability of an integer value e 
of the prediction error is proportional to eθ , 
where )1,0(∈θ controls the two-sided 
exponential decay rate. However, it was 
observed that [3] a dc offset is typically present 
in context-conditioned prediction error signals. 

This offset is due to integer-value constraints and 
possible bias in the prediction step. Thus, a more 
general model, which includes an additional 
offset parameter µ, is appropriate. Letting µ take 
noninteger values, the two adjacent modes often 
observed in empirical context-dependent 
histograms of prediction errors are also better 
captured by this model. We break the fixed 
prediction offset into an integer part R  (or 
“bias”), and a fractional part s  (or “shift”), such 
that µ = R - s, where 1s0 <≤ . Thus, the TSGD 
parametric class ),( µθP , for the residuals of the 
fixed predictor at each context, is given by:  
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Where, ),( sC θ is a normalization factor. The 
bias R calls for an integer adaptive term in the 
predictor. In the sequel, we assume that this term 
is tuned to cancel R, producing average residuals 
between distribution modes located at 0, -1. 
Consequently, after daptive prediction, the 
model of (2) reduces to: 
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(3) 
The model of (3) is depicted in fig.1. 
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Figure 1: Two-sided geometric distribution

The TSGD centered at zero corresponds to s=0, 
and, when s=1/2 is a bi-modal distribution with 
equal peaks at –1 and 0. This reduced range for 
the offset is matched to the Golomb codes [4,5], 
whose structure enables simple calculation of 
code word of any given sample, without recourse 
to the storage code tables, as would be the case 
with unstructured, generic Huffman codes. In an 
adaptive mode, a structured family of codes 
further relaxes the need to dynamically updating 
code tables due to possible variations in the 
estimated parameters [6].  
 
2.1 Bias Estimation 
In principle, maximum-likelihood (ML) 
estimation of R in (2) would dictate a bias 
cancellation procedure based on the median of 
the prediction errors incurred so far in the 
context by the fixed predictor (1). However, 
storage constraints rule out this possibility. 
Instead, an estimate based on the average could 
be obtained by just keeping a count N of context 
occurrences, and a cumulative sum B of fixed 
prediction errors incurred so far in the context. 
Then, a correction value R could be computed as 
the rounded average (4) and added to the fixed 
prediction MEDx̂ , to offset the prediction bias. 

⎥⎥
⎤
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⎡=

N
BR    (4) 

 

3. Context Determinations and Modeling 
in JPEG-LS Standard 
The context that conditions the encoding of the 
current prediction residual for pixel x in JPEG-
LS is built out of the following differences.  
 

c b d 
a x  

   

Figure 2: JPEG-LS context 

 
;;; acgcbgbdg 321 −=−=−=   (5) 

These differences represent the local gradient, 
thus capturing the level of activity (smoothness, 
edginess) surrounding a sample, which governs 
the statistical behavior of prediction errors. By 
symmetry, 1g , 2g  and 3g  influence the model in 
the same way. Since further model size reduction 
is obviously needed, each difference 

ig , 321i ,,=  is quantized into a small number 
of approximately equiprobable, connected 
regions by a quantizer (.)k  independent of i . 
This quantization aims at maximizing the mutual 
information between the current sample value 
and its context, an information-theoretic measure 
of the amount of information provided by 
conditioning context on the sample value to be 
modeled.   
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In principle, the number of regions into which 
each context difference is quantized should be 
adaptively optimized. However, the low 
complexity requirement dictates a fixed number 
of “equiprobable” regions. To preserve 
symmetry, the regions are indexed: 
 qi=k(gi)={-T,…-1,0,1,…T} k(gi)=-k(-gi) i=1,2,3, 
for a total 3)12( +T  of different contexts. A 
further reduction in the number of contexts is 
obtained after observing that, by symmetry, it is 
reasonable to assume that:  

prob{et=∆|Ct=[q1, q2, q3]} = 
prob{et= -∆|Ct=[-q1, -q2, -q3]}  (6) 
 
Where tC  represents the quantized context triplet 
and 321igkq ii ,,),( == . Hence, if the first 
nonzero element of tC  is negative, the encoded 
value is 1te +− , using context tC− . This is 
anticipated by the decoder, which flips the error 
sign if necessary to obtain the original error 
value. By merging contexts of “opposite signs,” 
the total number of contexts becomes 

2/)1)12(( 3 ++T . 
For JPEG-LS, 4=T was selected [7], resulting 
in 365 contexts. This number balances storage 
requirements (which are roughly proportional to 
the number of contexts) with high-order 
conditioning. To complete the definition of the 
contexts in JPEG-LS, it remains to specify the 
boundaries between quantization regions.  
For an 8-bit/sample alphabet, the default 
quantization regions are: 
{ } { } { } { } { }21,20,...8,7,6,5,4,3,2,1,0 ≥±±±± ee
However, the boundaries are adjustable, except 
that the central region must be {0}.  
 
4. Three-pass Interlaced Predictive 
Coding Scheme 
The majority of the current lossless image 
compression methods code the pixels in the 
raster scan order. As a result, the contexts 
available for image modeling cannot spatially 
enclose the modeled pixels. At any moment, 
only the pixels at the top and to the left of a pixel 

being coded are known to the both encoder and 
decoder so that they can be used in modeling and 
prediction. We call such a spatial configuration 
of modeling context the 180° type, since the 
modeling pixels only form a semicircle around a 
modeled pixel. Many image features, such as the 
intensity gradient, edge orientation, and textures, 
can be better modeled in a completely enclosing 
context. We call a spatial configuration of 
modeling context that completely surrounds a 
modeled pixel the 360˚ type.  
Intuitively, we desire an image-independent 
order of traversing pixels that can provide 
adjacent, enclosing modeling contexts for a 
maximum number of pixels. Three-pass 
interlaced sampling scheme is suitable in terms 
of overall compression gains. The encoding, and 
accordingly the decoding, of an image is done in 
three passes. Each pass uses an interlaced 
sampling of the original image. Denote a 
continuous-tone image of width W  and height 
H by: 
 HjWijiI ≤≤≤≤ 0,0),,( .  
The first pass encodes a sub sampled 

2/2/ HW × image denoted by µ , with the 
following relation between I andµ : 

⎥⎦
⎥

⎢⎣
⎢ +++=

2
)12,12()2,2(),( jiIjiIjiµ       

2Hj02Wi0 /,/ ≤≤≤≤  (7) 
),( jiµ is average intensity of two diagonally 

adjacent pixels. This sub sampling is designed to 
benefit prediction and the context modeling in 
the subsequent passes. The  2/2/ HW × image 
µ  is encoded in raster scan sequence using a 
180˚ type context. For instance, the prediction 
context may consist of previously encoded 
values 

)1,1(),1,(),1,1(),,1( −+−−−− jijijiji µµµµ
as shown in Fig.3. 
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Figure 3: first pass 

The prediction function is median estimation. 
The second pass uses sub-sampled image as the 
prediction contexts to encode NH/2 pixels: 

I(2i, 2j), I(2i+1, 2j+1), 
0≤i≤W/2, 0≤j≤H/2   (8) 

Namely, the first pass codes the same pixels 
involved in the diagonal means. But in the 
second pass, individual pixel values will be 
resolved from the corresponding diagonal means. 
Again, the second pass proceeds in raster scan 
sequence. First, consider the encoding of I(2i, 2j). 
Fig.4 is a snapshot of the second pass in which 
the x  marks the pixel being currently coded, and 
the diagonals are the two-pixel means from the 
first pass. 
  

  NN     

 NW   NE    
WW   x     
 WS      
      
      

Figure 4: second pass 

As shown by Fig.4, at this stage the sub sampled 
image µ  from the first pass is available to the 

right and bottom of the current pixel, and the 
previously coded pixels in the second pass are 
available to the left and top. They provide 360˚ 
type contexts surrounding I(2i, 2j). Specifically, 
we use a prediction context consisting of the 
values known to both the encoder and decoder: 
two-pixel means µ(i, j), µ(i+1, j), and µ(i, j+1), 
to the right and bottom of I(2i, 2j), and pixels 
I(2i-1, 2j+1), I(2i-1, 2j-1), I(2i+1, 2j-1), 
I(2i-2, 2j) and I(2i, 2j-2) to the left and top of 
I(2i, 2j), as marked in Fig. 4.  
Once I(2i, 2j) is reconstructed, the decoder can 
set I(2i+1, 2j+1) = 2µ(I, j) – I(2i, 2j) without 
receiving any information on I(2i+1, 2j+1).  
The third pass encodes the remaining half of the 
original image.  Namely, pixels interlaced in the 
checkerboard pattern, I(2i, 2j+1) and I(2i+1, 2j). 
The prediction contexts available to the third 
pass are spatially enclosing and adjacent to the 
modeled pixels. If the third pass of the image is 
also done in the raster scan order, then as 
illustrated by Fig.5 an unknown pixel x in the 
third pass can use a 360˚ type context consisting 
of all of its four-connected neighbors, and two of 
its eight-connected neighbors. 
 
 

NW N NE 
W x E 

 S  

Figure 5: third pass 

 
5. Context Modeling and Quantization in 
LIC Scheme 
In each of the tree passes, by selecting a context 
for every pixel, the value of it was predicted. Let 
x be the pixel to be coded, and Kxxx ,..., 21 be 
the values of pixels in a modeling context that 
surrounds the pixel x. For the 
modeling/prediction contexts with K=4, 9 and 6, 
for pass 1, 2, and 3 respectively, to minimize the 
code length ),..,(log 21 KxxxxP−  of x , we 
would like to maximize the conditional 
probability ),..,( 21 KxxxxP . Suppose that the 
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pixels have an intensity resolution of Z bits. 
Then there are ZK2 different contexts. Because 
of the excessive memory requirement to store the 
conditional probabilities for all possible contexts, 
and of prohibitive computational cost to estimate 
the probabilities, by using quantization possible 
contexts should be decreased.   The simple 
technique of modeling the unknown pixel x  as a 

linear combination of Kxxx ,..., 21 , ∑
=

=
K

k
kk xax

1

ˆ , 

as for the three passes above provides an 
efficient way of removing smoothness related 
redundancy based on unquantized contexts. By 
this technique, we convert the modeling problem 
of maximizing ),..,( 21 KxxxxP  to the one of 

maximizing ),..,( 21 KxxxeP , where xxe ˆ−= . 
A simple linear predictor may fail to remove all 
the correlations between adjacent samples if the 
sample values have a nonlinear relationship in a 
given context.  In order to facilitate context 
modeling of errors, we quantize the context 

Kxxx ,..., 21  that yields the prediction x̂  to a 
binary number 11...tttt KK −=  of bits, where 
 

⎩
⎨
⎧

<
≥

=
xxif
xxif

t
k

k
k ˆ1

ˆ0      (9) 

Intuitively, t  represents high-order spatial 
structures of the modeling context. Besides 
spatial texture patterns, the variability of 

Kxxx ,..., 21  also shapes ),..,( 21 KxxxeP . Clearly, 
the variance of the conditional probability 

),..,( 21 KxxxeP  strongly correlates to the 
smoothness of the image around the modeled 
pixel x . To model this correlation with a small 
number of parameters and at a small 
computational cost, we define a so-called error 
strength discriminator to be: 

∑
=

−=∆
K

k
kk xxw

1

ˆ        (10) 

Now the problem is changed from estimating 
),..,( 21 KxxxeP to estimating )( ∆eP . To 

prevent the problem of context dilution in 

estimating, we quantize ∆ to L levels. In 
practice, 8=L  is found to be sufficient. 
Since ∆  is a random variable, it requires only 
scalar quantization. Globally optimal 
quantization of ∆  via dynamic programming is 
practical [8].  By combining, via Cartesian 
product, the quantized error strength 
discriminator ∆ of L  levels and the 

K2 quantized texture patterns of (9), we finally 
quantize the ZK2 contexts into KL2.  contexts. 
They are called quantized contexts denoted by 

),( tdC , Ld0 <≤ , K2t0 <≤ . 
 
5.1 Context-based, Adaptive Error Modeling 
After quantization of contexts, adaptive error 
correction value, which is bias R in TSGD 
model, is calculated. For every context ),( tdC , 
with a count ),( tdN of context occurrence and a 
cumulative sum ),( tdB of fixed prediction 
errors incurred so far in the context, the 
correction value is obtained as below: 

),(
),(),(

tdN
tdBtde =    (11) 

Final prediction of x  is ),(ˆ tdexx +=& , and 
entropy error is xx &−∈= . In decoder after 
estimation and calculation of x& , the original 
value of x  is decoded as follow: 

⎩
⎨
⎧

∈+=
+=

xx
tdexx

&

& ),(ˆ
   (12) 

 
5.2 Optimal Context Quantization 
To defining the ∆ , Ideally, we would like to 
determine the coefficients kw  such that: 

∑
=

−=∆
K

k
kk xxw

1

ˆ  is the least-squares 

estimator of ∈  (the magnitude of the error being 
entropy coded). But this cannot be done because 
the ∆ quantizer has to be fixed in order to 
compute xx &−∈= , where ),(ˆ tdexx +=& , 

)(∆= Qd . The next best thing is to make ∆   

www.SID.ir


Arc
hive

 of
 S

ID

www.SID.ir

 

 ٣٢٩

 بهمن ۲۹ و ۲۸ين كنفرانس مهندسي پزشكي ايران، يازدهم

the least-squares estimator of  e , 

where xxe ˆ−=  . The standard linear 
regression is used to determine the coefficients 

kw . Specifically, given a predictor 

∑
=

=
K

k
kk xax

1

ˆ corresponding to one of the three 

passes, training set S  of xxe ˆ−=  and 

)1(,ˆ Kkxxk ≤≤− , is collected. Then 

kw , )( Kk1 ≤≤ , are chosen by linear 
regression to minimize 

2

1

2 )ˆˆ()(∑ ∑ ∑
=

−−−=∆−
S S

K

k
kk xxwxxe   

(13) 
 
over the training set. If time complexity is not of 
concern, the linear regression can be used to 
optimize∆  for each input image. But on a single 
image basis, the compression benefit usually 
does not justify the optimization cost. Instead, 
weights kw  should be optimized for classes of 
images off-line. In real-time coding process, 
suitable fixed weights kw  are used. Once ∆  is 
optimized over a training set, we can then 
optimize the ∆  quantizer. The quantization 
criterion is to minimize the conditional entropy 
of the errors based on ))(( ∆∈ QP . In an off-line 

design process, we get a set of ),( ∆∈  pairs from 
training images, and use the standard dynamic 
programming technique to choose 

∞=<<<= − LL qqqqq 1210 ...0  to partition 
the error terms xx &−∈=  into L  ranges: 
 
 { }1ddd qqS +<∆≤∈=        (14)  
 
Such that : 
 
∑
∈

+<∆≤∈∈− )(log)( 1̀dd qqPP   (15) 

is minimized. As in the determination of ∆, the 
design of optimal quantizer should be done off-
line over a training set. 
 
 
6. Results  
Results for implemented schemes, which are one 
and three pass schemes, JPEG-LS standard (one-
pass) and three-pass compression applied to it, 
are shown in following table. The comparison 
factor among implemented schemes is 
compression ratio that is calculated by dividing 
entropy of the original image by entropy of the 
compressed image. Images have been selected 
from Dr.S.Barre's web page [9]. 
Classifying images into two groups does 
analyzing the results. One group consists of 
images with dimensions smaller than 512*512 
pixels and another with dimensions equal or 
larger than 512*512 pixels. As shown in table 1, 
compression ratios obtained from three-pass 
compression schemes are higher than one-pass 
schemes for images in first group. For second 
group, one-pass schemes have higher ratios. 
Because of small data set (pixels) at first group, 
suitable training of context models and context 
dilution doesn't take place in one-pass schemes. 
But three-pass schemes that use 360˚ type 
modeling contexts increase ability of isolation 
and resolution between contexts and obtain 
higher compression ratios than one-pass schemes. 
Instead, because of higher image scanning in 
three-pass schemes, they have larger 
compression time than one-pass schemes, which 
is not suitable for real time applications. But for 
images with small dimensions, it is acceptable. 
By increasing image dimensions, enough data set 
(pixels) for training context models is provided. 
In this case, compression ratios of one-pass 
schemes are increased, so as for second image 
group, this schemes because of higher ratios and 
smaller compression time are more suitable than 
three-pass schemes. 
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Table 1: Comparsion of compression schemes 

3-pass LIC 3-pass 
JPEG-LS 

1-pass LIC 1-pass 
JPEG-LS 

Pixels Images  

2.8 2.86 2.02 1.78 208*256 MRI 
2.32 2.34 1.18 1.16 256*256 MR-angio 
2.94 3.16 2.39 1.76 256*256 MR-Knee 
2.80 2.9 2.07 1.72 256*256 MR-Abdomen 
2.62 2.85 2.7 2.11 440*440 CR-Chest 
2.34 2.54 2.56 2.82 512*512 CT-Abdomen 
2.26 2.56 2.58 2.84 512*512 CT-Ankle 
2.72 2.82 2.82 2.86 512*512 Colon 
2.8 2.88 2.86 2.9 512*512 Hip 
3.48 3.93 4.46 4.71 1976*1576 CR-Abdomen 
2.70 2.88 2.56 2.46 ---------- Average CR 

 
Introducing the image compression scheme to 
decoder, needs encoding excessive data to 
compressed image, which causes to increase 
entropy. So the optimal case in selecting image 
compression schemes, is independency to type 
and dimensions of images. For this selection, 
average of compression ratios for each scheme is 
calculated. As shown, three-pass JPEG-LS 
scheme has largest average among others and is 
suitable for compression applications, 
independent from type and dimensions of images.     
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