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Abstract 
      This paper proposes a combined method for 
sequential circuit test generation which employs STG-
based and GA-based test generation techniques.  Almost 
all previous hybrid test generators use algorithmic 
decomposition, but the proposed method uses circuit 
decomposition. So the STG-based techniques are used to 
generate test for control unit and test generation for 
datapath unit is performed by resorting to GA-based 
techniques. The combination of the two techniques is 
expected to provide high fault coverages in a reasonable 
time. Experimental results show the effectiveness of the 
approach.   

 
1. Introduction 
 

As the complexity of VLSI circuits grows, test 
generation for sequential circuits is becoming 
increasingly more difficult and time consuming. Several 
different approaches have been proposed in tackling this 
problem, including time frame-based techniques [1, 2, 
3], simulation-based techniques [4, 5] and techniques 
based on State Transition Graph (STG) [6, 7, 8]. In a 
typical time frame-based test generator, each fault is first 
excited and then the fault effects are propagated to a 
primary output (PO), and the required state is then 
justified through reverse time processing.  A STG-based 
test generator behavior is similar to time frame-based 
test generator and the only difference is how to construct 
the justification and propagation sequences. In a 
simulation-based test generator, the complexity of 
backward processing is avoided, and processing occurs 
in the forward direction only. Candidate test sequences 
are generated usually by targeting several faults 
simultaneously; a fault simulator is used to select the 
best test sequences. Genetic Algorithms (GAs) have 
been used widely to control the selection of candidate 
tests.  

Comparing these approaches shows that each has its 
own merits. Hence combination of these methods could 
be beneficial from the fact that these different techniques 
are suited for different types of circuits [9].   

The proposed test generation method is a 
combination of GA-based and STG-based techniques. 

GA-based techniques have been especially effective for 
data-dominant circuits, and STG-based techniques have 
also been used widely on control-dominant circuits. This 
combination which employs GA-based methods, such as 
adaptive search algorithms in optimization problems that 
have low execution time, and STG-based methods which 
have deterministic nature, can provide high structural 
fault coverage in a reasonable time.   

Figure 1 outlines the general view of the suggested 
strategy. According to this figure, the proposed method 
is composed of a preprocessing phase and two test 
generation phases.  In the preprocessing phase the STG 
of the circuit is extracted. After completion of this phase, 
in the first phase of test generation, the faults located in 
the datapath unit are considered for test generation and 
in the second phase the controller faults are targeted. 

 
 

  
 

Figure 1.  Overall test generation strategy 
 

In these phases, the two mentioned test generation 
techniques are employed.  Therefore, the main focus of 
the proposed test generation methodology is how these 
two techniques interact.  

Combination of GA-based techniques for datapath 
test generation and STG-based techniques for the 
controller provides high fault coverages in an effective 
manner in terms of test generation time and test set 
length.   
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The suggested approach exploits the gate level 
description of the circuit under test which is decomposed 
into datapath and control units. The gate level 
description of a circuit can be obtained through high 
level or RTL synthesis. In the cases that these two parts 
are combined, there are some techniques to separate the 
control and datapath sections of the design [10].  

However, for applying the proposed method to any 
circuit, there is no need for a significant amount of 
design-for-testability hardware.  The hardware overhead 
of this method is a partial scan chain that includes only 
those registers that provide status of datapath operations 
to the control unit. Figure 2 shows the general 
architecture of the circuits which the proposed test 
generation method can be applied to.  
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 Figure 2.  Reference Circuit Model 
 
The remainder of this paper is organized as follows. 

The overall test generation strategy is presented in 
Section2.  In this section the interaction between the 
STG-based test generator and the GA-based one is 
discussed.  Section 3 describes how the STG-based test 
generator works and the application of GA-based test 
generator is discussed in Section 4.  Section 5 presents 
experimental results and the last section is devoted to 
conclusions. 

 
2. Overall Test Generation Strategy 
 

The proposed test generation method is composed of 
a preprocessing phase and two test generation phases. As 
mentioned previously, the test generation process is 
entered after completion of the preprocessing phase, in 
which the STG of the circuit is implicitly extracted.  
More details of this phase will be presented in the next 
section.  After this preprocessing phase, the first phase of 
test generation process is started.  Pseudo-code of the 
test generation strategy is shown in Figure 3 According 
to that, in the first phase of test generation process, faults 
which are located in the datapath unit are targeted for 
test generation. After completion of this phase, in the 
second phase the control unit faults are considered. The 
main problem in each of these phases is the interaction 
of two combined test generation techniques, STG-based 

technique and GA-based technique.  In what follows, 
these two phases will be discussed in more details.    

 
2.1.  First Phase 
 

The first phase attempts to generate test sequences 
that detect faults which are located in the datapath unit. 
Due to the efficiency of applying the GA-based 
techniques to data dominant circuits for test generation, 
in this phase the GA-based technique is employed to 
generate test sequences.  Genetic Algorithms and their 
application in test generation are described in Section 4.  
The most important feature of these algorithms which 
must be considered in this section is that the 
convergence of a GA in solving a problem is dependent 
on the precision and size of the initial population.  
Consequently, in the proposed test generation method, 
the STG-based method is used to generate test sequences 
for constructing the initial population.  

In these test sequences, only the value of the control 
unit primary inputs and the value of status signals are 
specified, so datapath primary inputs are unspecified in 
these test sequences.  The status signals, as outlined in 
Figure 2, are in the scan chain, so they are fully 
controllable similar to the primary inputs. The GA, 
starting from this initial population, attempts to complete 
the unspecified portion of composed test sequences by 
targeting the detection of faults in the datapath unit. The 
generated test sequences are fault simulated and the 
detected faults are removed from the fault list.   

This process is repeated until all detectable faults of 
datapath unit are removed from the fault list. After 
completion of this phase, it is expected that all detectable 
faults of the datapath unit, all faults of the control unit 
whose effects can be observed only on the controller 
outputs, and some of the controller faults whose effects 
have been propagated to the datapath primary outputs are 
detected.  After completion of this phase, the second 
phase of the test generation process is started. 

    
2.2.  Second Phase  
 

In this phase, the remaining undetected faults of the 
control unit are targeted for test generation.   These are 
faults whose effects in the first phase are propagated to 
the control signals.   In the second phase, these fault 
effects must be propagated to the datapath primary 
outputs.  Therefore, for any undetected controller faults, 
a test sequence is generated using the STG-based test 
generator.   

After applying this test sequence to the faulty circuit, 
the state of the controller signals is saved.  This state is 
given to the PODEM algorithm to propagate the fault 
effects to datapath primary outputs.  If the fault effects 
cannot be propagated to primary outputs of the datapath 
unit in one time frame, another time frame is inserted 
and the PODEM is employed again.  If PODEM is 
successful, the GA is employed in an attempt to justify 
the state required by PODEM for fault detection. 
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CombinedTG (cirDesc, S0, GAParameters) 
 { 
   //Pre-Processing Phase 
     On-OffSets = ExtractSTG (cirDesc, S0);  
     faultList = GenerateFaultList (cirDesc) 
  //First Phase 
  while ( There is improvement in this phase or there are undetected faults in the datapath unit) 
  { 
         Number_of_test_sequences = 0 
         initialPopulation = {}  
         do 
         { 
             targetFault = select_fault (faultList); 
             testSequence (Controller PIs)  =  STG-Test (targetFault, On-OffSets, controllerDesc, S0) 
             fault_simulate (testSequence); 
             Update faultList; 
             initialPopulation = initialPopulation + testSequence; 
             Number_of_test_sequences ++; 
             Update testSet; 
        } while (Number_of_test_sequences! = populationSize) 
        GA-Test (cirDesc, faultList, initialPopulation, phase1)         
    } 
    //Second Phase 
    while ( There are detectable fault in the controller fault list )  
    { 
          testSequence (controller PIs) = STG-Test (targetFault, On-OffSets, controllerDesc, S0) 
          (prop_Sequence, reuquieredState) = PODEM (Control unit outputs, cirDesc) 
           jus_Sequence (datapath PIs) = GA-Test ( reuquieredState, cirDesc, randomPop, 
phase2) 
           finalTestSequence = merge(testSequence, jus_Sequence) + prop_Sequence 
           fault_simulate (finalTestSequence) 
           Update testSet; 
           Update faultList; 
     }     
} 

 
Figure 3.  Pseudo Code of the Proposed Test Generation Strategy 

 
 

3. STG-based Test Generation 
 

The STG of a sequential circuit, which is the most 
well known form of reachability information, helps in 
generating test sequences.   

The first feature of STG-based test generation 
methods is that these methods try to simplify the test 
generation problem by using the STG of the circuit 
under test.  Therefore, in these methods, the STG of the 
circuit must be extracted before entering the test 
generation process. Several different methods have 
been proposed for extracting the STG of a design [6, 7, 
8].  In this paper we use the PODEM-based method 
which is presented in [7] for STG extraction.  

In this method the STG of a design is implicitly 
extracted using the complete or partial sum-of-product 
representation of ON/OFF-sets of each flip-flop inputs 
and primary outputs of the design.  ON (OFF)-set of a 
signal S, is a set of input combinations, which produce 
a one (zero) value on signal S.  After extracting this 
information, the set of states that are reachable from 
the reset state and the corresponding transfer sequences 
for each of them can be computed. 

Using the STG in the test generation process (or in 
other words, knowing the reachable states of the circuit 
under test) prevents the test generator from justifying 

invalid excitation states, which significantly reduces 
the test generation time. 

The second feature of STG-based test generation 
methods [6, 7, 8] is simplifying the test generation 
problem by dividing it into two or three phases.   

In the STG-based test generator which is employed 
in the proposed approach, the test generation process is 
composed of three phases which are error excitation 
phase, justification phase and error propagation phase.   
The last two phases are performed by using 
information extracted in the preprocessing phase 
(STG).  These three phases are mentioned below. 
 
1. Error excitation phase: In this phase by applying 
a combinational test generator such as PODEM, an 
excitation vector (EV) is found.  This vector activates 
the target fault and propagates its effect to either 
primary outputs or the next-state lines of the circuit.  
Upon the application of this vector, the present state of 
the circuit is called the excitation state. 
 
2. Justification phase: In this phase, a justification 
sequence (JS) is found to transform the circuit from its 
initial state R to the excitation state S.  This sequence is 
obtained by traversing the STG of the fault free circuit 
which is extracted in the preprocessing phase of our 
suggested method. 
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3. Error Propagation phase: If under the application 
of the excitation vector, the fault effect propagates only 
to one of the next-state lines, a vector sequence must 
be found which propagates the error effect to one of the 
primary outputs. This sequence, called differentiating 
sequence (DS), is also constructed by utilizing STG of 
the fault-free circuit. 
 

Sequences which are obtained from STG of a fault 
free circuit may not be valid in the faulty condition, so 
after phase three the entire test sequence composed of 
JS, EV and DS is fault simulated to see whether the 
fault under test or any other undetected faults are 
detected. If the test is not valid under faulty condition 
and the maximum number of test sequences is not 
reached, another fault will be selected for STG-based 
test generation. 

  
4. GA-based Test Generation 
 

GAs are the search and optimization algorithms 
which tend to converge on solutions that are globally 
optimal or nearly so [11, 12].  GAs are used in both of 
the two phases of the proposed test generation method.  
We use a simple GA in both of these phases. In the 
first phase, a GA is employed that contains a 
population of individuals or strings.  Each individual in 
this phase is a sequence of test vectors and has an 
associated “fitness” which measures its quality in terms 
of detected faults.  The initial population is composed 
of N partially-specified test sequences which are 
provided by the STG-based test generator.  As 
mentioned before, constructing the initial population 
from the test sequences generated by the STG-based 
test generator enhances the efficiency of the GA and 
helps it generate valid test sequences.  In other words, 
by starting from these partially-specified test 
sequences, the GA attempts to generate fully specified 
test sequences by targeting all datapath faults.  The 
specified parts of these test sequences are the values of 
control signals, and the unspecified sections are the 
values of the datapath inputs. According to the 
experiences gathered in test generation, in most circuits 
the test sequences generated for stuck-at faults, 
especially in the datapath section, are usually clustered 
instead of being distributed.  So the test sequences 
generated this way have a good chance of detecting 
new faults. 

After constructing the initial population, the 
evolutionary processes of selection, crossover and 
mutation are used to generate an entirely new 
population from the existing population. Not all of the 
test sequences of the newly generated population are 
added to the final test set. Only the test sequences 
which detect new faults are added to the test set to keep 
the test set compact. The process of generating a new 
population from an existing one, repeats until 
acceptable fault coverage for the datapath unit faults is 

achieved or the number of generation is reached an 
upper limit.  

In the second phase, as mentioned before, the GA is 
used to propagate the effect of the controller faults, 
from the control signals to the primary outputs of the 
datapath unit. The functionality of the GA in this phase 
is very similar to the one used in the first phase. The 
main difference is the definition of Fitness function. 
The quality of an individual or its associated fitness 
measures the number of required flip-flop values that 
are correctly justified by each candidate sequence 
(individual). 

The simple GA which is employed in two phases 
utilizes adopted the tournament selection, uniform 
crossover and random mutation operators.  The 
selection operator selects one or more of the fittest 
individuals in a population to apply mutation or 
crossover operators. The crossover operator mates two 
different test sequences to generate a new one and 
mutation is done by simply flipping a randomly 
selected bit of a test vector in a sequence (an 
individual).  
 
5. Experimental results 

 
The STG-based test generator (STG-Test) is 

implemented in 5,000 lines of C++ code; it uses the 
PODEM algorithm (which is implemented in C++) to 
implicitly extract the STG of the circuit under test.  
The GA-based test generator (GA-Test) is also 
implemented in 2,000 lines of C++ code. The STG-
Test and GA-Test programs, according to pseudo code 
of Figure 3, are invoked in the CombinedTG program 
to implement the proposed test generation 
methodology. 

To verify our approach, we used a simple processor, 
SAYEH. We applied our test generation method to this 
processor.  Figure 4 shows the architecture of this 
processor. The processor has a 16-bit data bus and a 
16-bit address bus and 8- and 16-bit instructions.  Short 
instructions may contain shadow instructions, which 
effectively pack two such instructions into a 16-bit 
word. The controller of SAYEH has five states: reset, 
halt, fetch, decode, and exec.  The required scan-chain 
for circuit decomposition in the proposed method 
includes 16 flip-flops for SAYEH processor. 

To evaluate the effectiveness of the proposed 
method, we compared its fault coverage, number of 
deterministic ATPG calls and final test set length with 
a purely GA-based test generator, and again with a 
deterministic test generator. 

The values used as Genetic Algorithm parameters, 
such as population size, mutation and crossover rate, 
tournament size, overselection rate and the maximum 
number of generations, are reported in Table 1. These 
parameters are tuned to improve the effectiveness of 
the GA used in the proposed method for test 
generation.  
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Figure 4.  Architecture of SAYEH processor 
 
 
Table 1.  Genetic Algorithm parameters 

 
Parameter Value 

Population size 10 

Mutation rate 0.1 

Crossover rate 1 

Tournament size 4 

Overselection rate 0 

 
The results we obtained are presented in Table 2.  

These results show that the proposed method has 
higher fault coverage compared to the GA-based test 
generator. Moreover, the number of deterministic 
ATPG calls in the proposed method, which have direct 
influence on the test generation time, is much less than 
the pure deterministic test generation. 

 
Table 2.  Comparison of results for three test 

generation methods 
 

Test generation 
method 

Fault 
coverage 

Number of 
Deterministic 

ATPG call 

Test set 
Length 

GA-based 81.6% 0 2560 

Deterministic 95% 110 1380 

Proposed 
Method 95% 73 1635 

 
 

6. Conclusions 
 

In this paper, an approach for sequential circuit test 
generation is presented.  The proposed method is a 
combination of STG-based and GA-based methods, so 

this combined approach benefits from the best features 
of these two test generation techniques.  STG-based 
methods have good performance in test generation for 
control-dominant circuits because they use the 
reachability information of the circuit under test and 
this information can be easily extracted for controllers. 
GAs are the search and optimization algorithm that 
have fast execution time because of their non-
deterministic nature.  It has been shown that the GA-
based test generation methods are most effective for 
data-dominant circuits. Therefore, in the proposed test 
generation approach the STG-based method is 
employed for the control unit test generation and a GA-
based method is used for datapath unit test generation. 
The fast execution run of the GA-based test generator, 
combined with a powerful and deterministic STG-
based test generator that can identify undetectable 
faults, provides high fault coverage in a reasonable 
time. Experimental results gathered on a simple 
processor show the feasibility and effectiveness of the 
method in terms of achieved structural fault coverage, 
number of deterministic ATPG calls and final test set 
length.   
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