
Arc
hi

ve
 o

f S
ID

A Combined Method to Improve Sequential Circuit Test Generation

Roohollah Mohammadkhani and Shaahin Hessabi
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

hessabi@sharif.edu

Abstract
 This paper proposes a combined method for
sequential circuit test generation which employs STG-
based and GA-based test generation techniques. Almost
all previous hybrid test generators use algorithmic
decomposition, but the proposed method uses circuit
decomposition. So the STG-based techniques are used to
generate test for control unit and test generation for
datapath unit is performed by resorting to GA-based
techniques. The combination of the two techniques is
expected to provide high fault coverages in a reasonable
time. Experimental results show the effectiveness of the
approach.

1. Introduction

As the complexity of VLSI circuits grows, test
generation for sequential circuits is becoming
increasingly more difficult and time consuming. Several
different approaches have been proposed in tackling this
problem, including time frame-based techniques [1, 2,
3], simulation-based techniques [4, 5] and techniques
based on State Transition Graph (STG) [6, 7, 8]. In a
typical time frame-based test generator, each fault is first
excited and then the fault effects are propagated to a
primary output (PO), and the required state is then
justified through reverse time processing. A STG-based
test generator behavior is similar to time frame-based
test generator and the only difference is how to construct
the justification and propagation sequences. In a
simulation-based test generator, the complexity of
backward processing is avoided, and processing occurs
in the forward direction only. Candidate test sequences
are generated usually by targeting several faults
simultaneously; a fault simulator is used to select the
best test sequences. Genetic Algorithms (GAs) have
been used widely to control the selection of candidate
tests.

Comparing these approaches shows that each has its
own merits. Hence combination of these methods could
be beneficial from the fact that these different techniques
are suited for different types of circuits [9].

The proposed test generation method is a
combination of GA-based and STG-based techniques.

GA-based techniques have been especially effective for
data-dominant circuits, and STG-based techniques have
also been used widely on control-dominant circuits. This
combination which employs GA-based methods, such as
adaptive search algorithms in optimization problems that
have low execution time, and STG-based methods which
have deterministic nature, can provide high structural
fault coverage in a reasonable time.

Figure 1 outlines the general view of the suggested
strategy. According to this figure, the proposed method
is composed of a preprocessing phase and two test
generation phases. In the preprocessing phase the STG
of the circuit is extracted. After completion of this phase,
in the first phase of test generation, the faults located in
the datapath unit are considered for test generation and
in the second phase the controller faults are targeted.

Figure 1. Overall test generation strategy

In these phases, the two mentioned test generation
techniques are employed. Therefore, the main focus of
the proposed test generation methodology is how these
two techniques interact.

Combination of GA-based techniques for datapath
test generation and STG-based techniques for the
controller provides high fault coverages in an effective
manner in terms of test generation time and test set
length.

Pre Processing:
Implicit STG Extraction

VHDL Description

First Phase:
Test Generation for
 Datapath unit faults

Second Phase:
Test Generation for
Control unit faults

www.SID.ir

Arc
hi

ve
 o

f S
ID

The suggested approach exploits the gate level
description of the circuit under test which is decomposed
into datapath and control units. The gate level
description of a circuit can be obtained through high
level or RTL synthesis. In the cases that these two parts
are combined, there are some techniques to separate the
control and datapath sections of the design [10].

However, for applying the proposed method to any
circuit, there is no need for a significant amount of
design-for-testability hardware. The hardware overhead
of this method is a partial scan chain that includes only
those registers that provide status of datapath operations
to the control unit. Figure 2 shows the general
architecture of the circuits which the proposed test
generation method can be applied to.

Controller

Scan

Reg.
s

Datapath

Status
Signals

Control
Signals

Primary
Outputs

Primary
Outputs

Primary
Inputs

Primary
Inputs

 Figure 2. Reference Circuit Model

The remainder of this paper is organized as follows.

The overall test generation strategy is presented in
Section2. In this section the interaction between the
STG-based test generator and the GA-based one is
discussed. Section 3 describes how the STG-based test
generator works and the application of GA-based test
generator is discussed in Section 4. Section 5 presents
experimental results and the last section is devoted to
conclusions.

2. Overall Test Generation Strategy

The proposed test generation method is composed of
a preprocessing phase and two test generation phases. As
mentioned previously, the test generation process is
entered after completion of the preprocessing phase, in
which the STG of the circuit is implicitly extracted.
More details of this phase will be presented in the next
section. After this preprocessing phase, the first phase of
test generation process is started. Pseudo-code of the
test generation strategy is shown in Figure 3 According
to that, in the first phase of test generation process, faults
which are located in the datapath unit are targeted for
test generation. After completion of this phase, in the
second phase the control unit faults are considered. The
main problem in each of these phases is the interaction
of two combined test generation techniques, STG-based

technique and GA-based technique. In what follows,
these two phases will be discussed in more details.

2.1. First Phase

The first phase attempts to generate test sequences
that detect faults which are located in the datapath unit.
Due to the efficiency of applying the GA-based
techniques to data dominant circuits for test generation,
in this phase the GA-based technique is employed to
generate test sequences. Genetic Algorithms and their
application in test generation are described in Section 4.
The most important feature of these algorithms which
must be considered in this section is that the
convergence of a GA in solving a problem is dependent
on the precision and size of the initial population.
Consequently, in the proposed test generation method,
the STG-based method is used to generate test sequences
for constructing the initial population.

In these test sequences, only the value of the control
unit primary inputs and the value of status signals are
specified, so datapath primary inputs are unspecified in
these test sequences. The status signals, as outlined in
Figure 2, are in the scan chain, so they are fully
controllable similar to the primary inputs. The GA,
starting from this initial population, attempts to complete
the unspecified portion of composed test sequences by
targeting the detection of faults in the datapath unit. The
generated test sequences are fault simulated and the
detected faults are removed from the fault list.

This process is repeated until all detectable faults of
datapath unit are removed from the fault list. After
completion of this phase, it is expected that all detectable
faults of the datapath unit, all faults of the control unit
whose effects can be observed only on the controller
outputs, and some of the controller faults whose effects
have been propagated to the datapath primary outputs are
detected. After completion of this phase, the second
phase of the test generation process is started.

2.2. Second Phase

In this phase, the remaining undetected faults of the
control unit are targeted for test generation. These are
faults whose effects in the first phase are propagated to
the control signals. In the second phase, these fault
effects must be propagated to the datapath primary
outputs. Therefore, for any undetected controller faults,
a test sequence is generated using the STG-based test
generator.

After applying this test sequence to the faulty circuit,
the state of the controller signals is saved. This state is
given to the PODEM algorithm to propagate the fault
effects to datapath primary outputs. If the fault effects
cannot be propagated to primary outputs of the datapath
unit in one time frame, another time frame is inserted
and the PODEM is employed again. If PODEM is
successful, the GA is employed in an attempt to justify
the state required by PODEM for fault detection.

www.SID.ir

Arc
hi

ve
 o

f S
ID

CombinedTG (cirDesc, S0, GAParameters)
 {
 //Pre-Processing Phase
 On-OffSets = ExtractSTG (cirDesc, S0);
 faultList = GenerateFaultList (cirDesc)
 //First Phase
 while (There is improvement in this phase or there are undetected faults in the datapath unit)
 {
 Number_of_test_sequences = 0
 initialPopulation = {}
 do
 {
 targetFault = select_fault (faultList);
 testSequence (Controller PIs) = STG-Test (targetFault, On-OffSets, controllerDesc, S0)
 fault_simulate (testSequence);
 Update faultList;
 initialPopulation = initialPopulation + testSequence;
 Number_of_test_sequences ++;
 Update testSet;
 } while (Number_of_test_sequences! = populationSize)
 GA-Test (cirDesc, faultList, initialPopulation, phase1)
 }
 //Second Phase
 while (There are detectable fault in the controller fault list)
 {
 testSequence (controller PIs) = STG-Test (targetFault, On-OffSets, controllerDesc, S0)
 (prop_Sequence, reuquieredState) = PODEM (Control unit outputs, cirDesc)
 jus_Sequence (datapath PIs) = GA-Test (reuquieredState, cirDesc, randomPop,
phase2)
 finalTestSequence = merge(testSequence, jus_Sequence) + prop_Sequence
 fault_simulate (finalTestSequence)
 Update testSet;
 Update faultList;
 }
}

Figure 3. Pseudo Code of the Proposed Test Generation Strategy

3. STG-based Test Generation

The STG of a sequential circuit, which is the most
well known form of reachability information, helps in
generating test sequences.

The first feature of STG-based test generation
methods is that these methods try to simplify the test
generation problem by using the STG of the circuit
under test. Therefore, in these methods, the STG of the
circuit must be extracted before entering the test
generation process. Several different methods have
been proposed for extracting the STG of a design [6, 7,
8]. In this paper we use the PODEM-based method
which is presented in [7] for STG extraction.

In this method the STG of a design is implicitly
extracted using the complete or partial sum-of-product
representation of ON/OFF-sets of each flip-flop inputs
and primary outputs of the design. ON (OFF)-set of a
signal S, is a set of input combinations, which produce
a one (zero) value on signal S. After extracting this
information, the set of states that are reachable from
the reset state and the corresponding transfer sequences
for each of them can be computed.

Using the STG in the test generation process (or in
other words, knowing the reachable states of the circuit
under test) prevents the test generator from justifying

invalid excitation states, which significantly reduces
the test generation time.

The second feature of STG-based test generation
methods [6, 7, 8] is simplifying the test generation
problem by dividing it into two or three phases.

In the STG-based test generator which is employed
in the proposed approach, the test generation process is
composed of three phases which are error excitation
phase, justification phase and error propagation phase.
The last two phases are performed by using
information extracted in the preprocessing phase
(STG). These three phases are mentioned below.

1. Error excitation phase: In this phase by applying
a combinational test generator such as PODEM, an
excitation vector (EV) is found. This vector activates
the target fault and propagates its effect to either
primary outputs or the next-state lines of the circuit.
Upon the application of this vector, the present state of
the circuit is called the excitation state.

2. Justification phase: In this phase, a justification
sequence (JS) is found to transform the circuit from its
initial state R to the excitation state S. This sequence is
obtained by traversing the STG of the fault free circuit
which is extracted in the preprocessing phase of our
suggested method.

www.SID.ir

Arc
hi

ve
 o

f S
ID

3. Error Propagation phase: If under the application
of the excitation vector, the fault effect propagates only
to one of the next-state lines, a vector sequence must
be found which propagates the error effect to one of the
primary outputs. This sequence, called differentiating
sequence (DS), is also constructed by utilizing STG of
the fault-free circuit.

Sequences which are obtained from STG of a fault
free circuit may not be valid in the faulty condition, so
after phase three the entire test sequence composed of
JS, EV and DS is fault simulated to see whether the
fault under test or any other undetected faults are
detected. If the test is not valid under faulty condition
and the maximum number of test sequences is not
reached, another fault will be selected for STG-based
test generation.

4. GA-based Test Generation

GAs are the search and optimization algorithms
which tend to converge on solutions that are globally
optimal or nearly so [11, 12]. GAs are used in both of
the two phases of the proposed test generation method.
We use a simple GA in both of these phases. In the
first phase, a GA is employed that contains a
population of individuals or strings. Each individual in
this phase is a sequence of test vectors and has an
associated “fitness” which measures its quality in terms
of detected faults. The initial population is composed
of N partially-specified test sequences which are
provided by the STG-based test generator. As
mentioned before, constructing the initial population
from the test sequences generated by the STG-based
test generator enhances the efficiency of the GA and
helps it generate valid test sequences. In other words,
by starting from these partially-specified test
sequences, the GA attempts to generate fully specified
test sequences by targeting all datapath faults. The
specified parts of these test sequences are the values of
control signals, and the unspecified sections are the
values of the datapath inputs. According to the
experiences gathered in test generation, in most circuits
the test sequences generated for stuck-at faults,
especially in the datapath section, are usually clustered
instead of being distributed. So the test sequences
generated this way have a good chance of detecting
new faults.

After constructing the initial population, the
evolutionary processes of selection, crossover and
mutation are used to generate an entirely new
population from the existing population. Not all of the
test sequences of the newly generated population are
added to the final test set. Only the test sequences
which detect new faults are added to the test set to keep
the test set compact. The process of generating a new
population from an existing one, repeats until
acceptable fault coverage for the datapath unit faults is

achieved or the number of generation is reached an
upper limit.

In the second phase, as mentioned before, the GA is
used to propagate the effect of the controller faults,
from the control signals to the primary outputs of the
datapath unit. The functionality of the GA in this phase
is very similar to the one used in the first phase. The
main difference is the definition of Fitness function.
The quality of an individual or its associated fitness
measures the number of required flip-flop values that
are correctly justified by each candidate sequence
(individual).

The simple GA which is employed in two phases
utilizes adopted the tournament selection, uniform
crossover and random mutation operators. The
selection operator selects one or more of the fittest
individuals in a population to apply mutation or
crossover operators. The crossover operator mates two
different test sequences to generate a new one and
mutation is done by simply flipping a randomly
selected bit of a test vector in a sequence (an
individual).

5. Experimental results

The STG-based test generator (STG-Test) is

implemented in 5,000 lines of C++ code; it uses the
PODEM algorithm (which is implemented in C++) to
implicitly extract the STG of the circuit under test.
The GA-based test generator (GA-Test) is also
implemented in 2,000 lines of C++ code. The STG-
Test and GA-Test programs, according to pseudo code
of Figure 3, are invoked in the CombinedTG program
to implement the proposed test generation
methodology.

To verify our approach, we used a simple processor,
SAYEH. We applied our test generation method to this
processor. Figure 4 shows the architecture of this
processor. The processor has a 16-bit data bus and a
16-bit address bus and 8- and 16-bit instructions. Short
instructions may contain shadow instructions, which
effectively pack two such instructions into a 16-bit
word. The controller of SAYEH has five states: reset,
halt, fetch, decode, and exec. The required scan-chain
for circuit decomposition in the proposed method
includes 16 flip-flops for SAYEH processor.

To evaluate the effectiveness of the proposed
method, we compared its fault coverage, number of
deterministic ATPG calls and final test set length with
a purely GA-based test generator, and again with a
deterministic test generator.

The values used as Genetic Algorithm parameters,
such as population size, mutation and crossover rate,
tournament size, overselection rate and the maximum
number of generations, are reported in Table 1. These
parameters are tuned to improve the effectiveness of
the GA used in the proposed method for test
generation.

www.SID.ir

Arc
hi

ve
 o

f S
ID

Figure 4. Architecture of SAYEH processor

Table 1. Genetic Algorithm parameters

Parameter Value

Population size 10

Mutation rate 0.1

Crossover rate 1

Tournament size 4

Overselection rate 0

The results we obtained are presented in Table 2.

These results show that the proposed method has
higher fault coverage compared to the GA-based test
generator. Moreover, the number of deterministic
ATPG calls in the proposed method, which have direct
influence on the test generation time, is much less than
the pure deterministic test generation.

Table 2. Comparison of results for three test

generation methods

Test generation
method

Fault
coverage

Number of
Deterministic

ATPG call

Test set
Length

GA-based 81.6% 0 2560

Deterministic 95% 110 1380

Proposed
Method 95% 73 1635

6. Conclusions

In this paper, an approach for sequential circuit test
generation is presented. The proposed method is a
combination of STG-based and GA-based methods, so

this combined approach benefits from the best features
of these two test generation techniques. STG-based
methods have good performance in test generation for
control-dominant circuits because they use the
reachability information of the circuit under test and
this information can be easily extracted for controllers.
GAs are the search and optimization algorithm that
have fast execution time because of their non-
deterministic nature. It has been shown that the GA-
based test generation methods are most effective for
data-dominant circuits. Therefore, in the proposed test
generation approach the STG-based method is
employed for the control unit test generation and a GA-
based method is used for datapath unit test generation.
The fast execution run of the GA-based test generator,
combined with a powerful and deterministic STG-
based test generator that can identify undetectable
faults, provides high fault coverage in a reasonable
time. Experimental results gathered on a simple
processor show the feasibility and effectiveness of the
method in terms of achieved structural fault coverage,
number of deterministic ATPG calls and final test set
length.

References

[1] T. M. Niermann, J. H. Patel, “HITEC: A Test Generation
 Package for Sequential Circuits,” In Proceedings of the
 European Design Automation Conference, Feb. 1991,
 pp. 214 –218.

[2] T. P. Kesley, K. K. Saluja, S. Y. Lee, “An Efficient
 Algorithm for Sequential Test Generation,” IEEE Trans.
 on Computers, Nov. 1993, pp. 1361-1371.

[3] I. Hamzaoglu, J. H. Patel, “Deterministic Test Pattern
 Generation Techniques for Sequential Circuits,” ICCAD
 2000, pp. 538-543.

[4] R. Guo, S. M. Reddy, I. Pomeranz, “On Improving a
 Fault Simulation Based Test Generator for Synchronous
 Sequential Circuits,” Asian Test Symposium, 2001.

[5] D. G. Saab, Y. G. Saab J. A. Abraham, “CRIS: A Test
 Cultivation Program for Sequential VLSI Circuits,” In
 Proceedings of the IEEE International Conference on
 Computer-Aided Design, Nov. 1992, pp. 216–219.

[6] H.-K. T. Ma, S. Devadas, and A. Sangiovanni-
 Vincentelli,“Test Generation for Sequential Circuits,”
 IEEE Trans. Computer-Aided Design, Vol.7, pp.1081-
 1093, Oct. 1988.

[7] A. Ghosh, S. Devadas, A. R. Newton, “Test Generation
 and Verification for Highly Sequential Circuits,” IEEE
 Transaction Computer Aided Design, May 1991, pp.
 652– 667.

[8] H. Cho, G. D. Hatchel, F. Somenzi, “Redundancy
 Identification/Removal and Test Generation for
 Sequential Circuits Using Implicit State Enumeration,”
 IEEE Trans. Computer-Aided Design, vol. 12, July
 1993, pp. 935-945.

Flags

Databus

/ 16

M E M O R Y
 (not modeled)

Register File

64 X 16-Bit

PC

IR

Address Logic

WP

6

/

/ 8

/ 8

/ 16

/ 16

/ 16

16

16

/

/ 16

6

/

C O N T R O L L E R

8

/ 16

/ 16

Arithmetic Unit

/ 16

Addressing Unit

4

Address_on_Databus

ALU on Databus

RFright_on_OpndBus IR_on_OpndBus

ResetPC

PCplusI

PCplus1

IRload
WPadd

 WPreset

SRload

RFwrite
RFzeroLeft

RFzeroRight

Address

OpndBus

IRout[5:0]

IRout[11:8]

ReadMem
 WriteMem

Cin

Cout
Zout

Left Right

 /

A15to0

B15to0

Bleast

AandB

AorB

notB

Memory_on_Databus

MemoryBus

Databus

16
/

www.SID.ir

Arc
hi

ve
 o

f S
ID

[9] E. M. Rudnick, J. H. Patel, “Combining Deterministic
 and Genetic Approaches for Sequential Circuit Test
 Generation,” In Proceedings of the ACM/IEEE 32nd
 Design Automation Conference, June 1995, pp. 183–
 188.

[10] D. Corvino, I. Epicoco, f. Ferrandi, F. Fummi, and D.
 Sciuto. “Automatic VHDL reconstructing for RTL
 synthesis optimization and testability improvement,”
 Proc. IEEE Int. Conf. Computer Design, 1998, pp. 587-
 596.

[11] M. S. Hsiao, “Sequential Test Generation Using Genetic
 Methods,” PhD Thesis, Illinois University, 1997.

[12] X. Yu, A. Fin, F. Fummi, E. M. Rudnick, “A Genetic
 Testing Framework for Digital Integrated Circuits,”
 ICTAI 2002, pp. 521-526.

www.SID.ir

