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Abstract

In this paper, we first give a formal description for cellular learning automata and then study its convergence
behavior. It is shown that for permutable rules, the cellular learning automata converges to a stable and com-
patible configuration. The numerical results also confirms our theoretical investigations.

1 Introduction'®

Decentralization is a common feature of natural
and man-made systems in which, due to large spa~
tial separation of decision makers or limited band-
width of communication channels, complete infor-
mation exchange may not be feasible. The decision
makers in such a system can gather limited infor-
mation about each other and the overall system.
Hence, the decisions must be made by individual
decision makers that have access to partial infor-
mation regarding the state of the system. Decen-
tralization, by its nature, introduces. uncertainty
in to the decision process.

In addition to spatial separation of system and in-
complete information exchange, uncertainties re-
garding system parameters, control actions taken
by other decision makers and external events in-
crease the complexity of decentralized systems.
Even in the absence of these uncertainties it is well
known that the coordination of decentralized de-
cision makers is a formidable problem.

Adaptation (learning) in decision process over-
comes the introduced uncertainty. By using learn-
ing, the different decentralized decision makers
used in the system attempt to converge to their
optimal strategies by improving their performance
online, based upon the response of the overall
system. Hence, learning can be considered as a
critical part of decision makers that have access
to the partial information. A subclass of such sys-
tems, which are modelled using cellular automata
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(CA), use information exchange with neighbor-
hood decision' makers.

Cellular automata are mathematical models for
systems consisting of large numbers of simple iden-
tical components with local interactions. CA are
non-linear dynamical systems in which space and
time are discrete. It is called cellular, because it
is made up cells like points in the lattice or like
squares of the checker boards and it is called au-
tomata, because it follows a simple rule [1]. The
simple components act together to produce com-
plicated patterns of behavior. Cellular automata
perform complex computation with high degree of
efficiency and robustness. They are specially suit-
able for modelings natural systems that can be
described as massive collections of simple objects
interacting locally with each other [2][3]. Infor-
mally, a d—dimensional CA consists of an infinite
d—dimensional lattice of identical cells. Each cell
can assume a state from finite set of states. The
cells update their states synchronously on discrete
steps according to a local rule. The new state of
each cell depends on the previous states of a set of
cells, including the cell itself, and constitutes its
neighborhood [4]. The state of all cells in the lattice
are described by a configuration. A configuration
can be described as the state of the whole lattice.
The rule and the initial configuration of the CA
specifies the evolution of CA that tells how each
configuration is changed in one step. Formally, a
CA can be defined as follows

Definition 1 A d—dimensional cellular automata
is a structure A = (Z%,®, N, F), where

(1) Z% is a lattice of d—tuples of integer numbers.



Each cell in the d-dimensional lattice, Z%, is
represented by a d-tuple (21,292, -+, 24).

® ={1,---,m} is a finite set of states.

N = {%1,Zs, -+, %} is a finite subset of Z¢
called neighborhood vector, where T; € Z%.
The neighborhood vector determines the rel-
ative position of the neighboring lattice cells
from any given cell u in the lattice Z®. The
neighbors of a particular cell u are set of cells
{u+ i = 1,2,---,m}. We assume that,
there exists a neighborhood function N (u) that
maps a cell u to the set of its neighbors, that is

(2)
(3)

N(u) = (u+Z1,u+ Zo, -, u+ Tpp). (1)
For the sake of simplicity, we assume that

the first element of neighborhood vector (i.e.

%1 ) is equal to d-tuple (0,0,---,0) or equiva-

lently u + z1 = u. The neighborhood function

N (u) must satisfy in the two following condi-

tions: _

e u € N(u) forallu € Z%. B

e u; € N(uz) < us € N(uy) for all
ul, us € Z¢,

F : ®™ — & is the local rule of the cellular

automata. It gives the new state of each cell

from the current states of its neighbors.

(4)

Learning in the learning automata have been stud-
ied using the paradigm of an automaton oper-
ating in an unknown random environment. In a
simple form, the automaton has finite set of ac-
tions to choose from and at each stage, its choice
(action) depends upon its action probability vec-
tor. For each action chosen by the automaton,
the environment gives a reinforcement signal with
fixed unknown probability distribution. The au-
tomaton then updates its action probability vector
depending upon the reinforcement signal at. that
stage, and evolves to the some final desired behav-
ior. Learning automata can be classified into two
main families: fized structure learming automata
and variable structure learning automata [5]. Vari-
able structure learning automataare represented
by triple < 8, a, T >, where. 3 is a set of inputs,
is a set of actions, and 7' is learning algorithm. The
learning algorithm is a‘recurrence relation and is
used to modify action probability vector p. Various
learning algorithms have been reported in the liter-
ature. In what follows, two learning algorithms for
updating the action probability vector are given.
Let «; be the action chosen at time & as a sample
realization from probability distribution p(k). In
linear reward-inaction algorithm (Lg_j) scheme
the recurrence equation for updating p is defined
as

pi(k) +ax[l—p;k)] if i=j

ik +1) =
P+ {pj<k>—a><pj<k> it i

when (k) = 0 and the action probability vec-
tor remains unchanged when (k) = 1. Param-
eters 0 < a < 1 represent step lengths and r
is the number of actions for LA. LA have been

used successfully in many applications such as tele-
phone and data network routing [6], solving NP-
Complete problems [7], capacity assignment [§]
and neural network engineering [9,10] to mention
a few.

Automata are, by design, ”simple agents for doing
simple things”. The full potential of a LA is re-
alized when multiple automata interact with each
other. Interaction may assume different forms such
as tree, mesh, array and etc. Depending on the
problem that needs to be solved, one of these struc-
tures for interaction may be chosen. In most ap-
plications, full interaction between all LAs is not
necessary and is not natural. Local interaction of
LAs, which can be defined in a from of graph such
as tree, mesh, or array, is natural in many ap-
plication. In the other hand, CA are mathemati-
cal models for systems consisting of large numbers
of simple identical components with local interac-
tions. In this paper, we combine the CA and LA
to obtain a new model called cellular learning au-
tomata (CLA). Thissmodel is superior to CA be-
cause of its ability‘to learn and also is superior to
single LA because it is.a collection of LLAs which
can interact with each other. The basic idea of
CLA, which is a subclass of stochastic CA, is to use
learning automatas(LA) to adjust the state tran-
sition probability of stochastic CA. The CLA can
be classified into synchronous and asynchronous.
In synchronous CLA, all cells are synchronized
with a global clock and executed at the same time.
In [11], an asynchronous CLA with several LA in
each cell is given and used as an adaptive con-
troller. In this model, state space of system under
control is uniformly discretized into cells. The ac-
tions of each LA correspond to discritized values of
the corresponding control variable. Based on the
state of system (Sp) one cell in CLA is activated.
Every LA of the activated cell chooses an action
based on its action probability vector. These ac-
tions are applied to the system and the state of
system is changed from Sy to S;. The environment
then passes a reinforcement signal to the LA of
the activated cell. Depending on this signal, LA
in activated cell and its neighboring cells update
their action probability vectors. This process con-
tinues until termination state is reached. In [12], a
model of synchronous CLA has been proposed in
which each cell can hold one LA. The CLA have
been used in many applications such as image pro-
cessing [13], rumor diffusion [14], image process-
ing [15-18], modelling of commerce networks [19],
channel assignment in cellular networks [20], and
VLSI Placement [21] to mention a few.

Since introduction of CLA, it has been used in
a number of applications but no mathematical
framework for studying its behavior has been de-
veloped yet. Having a mathematical framework
for CLA not only enables us to investigate the
characteristics of this model deeper, which may
lead us to find more applications, but having such
a mathematical framework also makes it possible
to study the previous applications more rigor-



ously and develop better CLA based algorithms
for those applications. In this paper, we develop
a mathematical framework for studying the be-
havior of the CLA and investigate its convergence
properties. It is shown that for commutative rules,
the CLA converges to a globally stable state.

The rest of this paper is organized as follows. In
section 2, the CLA is presented. The synchronous
CLA and the synchronous CLA using commuta-
tive rules are presented in sections 3 and 4, respec-
tively. Sections 5 presents the numerical example
and section 6 concludes the paper.

2 Cellular Learning Automata

Cellular learning automata (CLA) is a mathemat-
ical model for dynamical complex systems that
consists of large number of simple components.
The simple components, which have learning
capability, act together to produce complicated
behavioral patterns. A CLA is a CA in which a
learning automaton (multiple learning automata)
is assigned to its every cell. The learning automa-
ton residing in a particular cell determines its
state(action) on the basis of its action probability
vector. Like CA, there is a rule that CLA oper-
ate under it. The rule of CLA and the actions
selected by the neighboring LAs of any particular
LA determine the reinforcement signal to the LA
residing in that cell. In CLA, the neighboring LAs
of any particular LA constitute its local environ-
ment, which is nonstationary because it varies
as action probability vectors of neighboring LAs
vary.

The operation of cellular learning automata ‘could
be described as follows: At the first step, the inter-
nal state of every cell is specified. The state of ev-
ery cell is determined on the basis of action proba-
bility vectors of the learning automata residing in
that cell. The initial value of this stateimay be cho-
sen on the basis of past experience or at random.
In the second step, the rule of cellular automata
determines the reinforcement:signal to each learn-
ing automaton residing.in that cell. Finally, each
learning automaton updates. its action probabil-
ity vector on the basis of supplied reinforcement
signal and the chosen action. This process contin-
ues until the desired result is obtained. Formally a
d—dimensional CLA is given below.

Definition 2 A d—dimensional cellular learning
automata is a structure A = (7%, ® A /N, F),
where

Z% is a lattice of d—tuples of integer numbers.

® is a finite set of states.

A is the set of LAs each of which is assigned to
each cell of the CA.

N = {Z1,%2, -, Zm} is a finite subset of Z¢
called neighborhood vector, where z; € Z9.

F : ®™ — 3 is the local rule of the cellular au-
tomata, where (3 is the set of values that the re-
inforcement signal can take. It gives the reward
(reinforcement) signal to each LA from the cur-

rent actions selected by its neighboring LAs.

In what follows, we consider CLA with n cells and
neighborhood function N (7). A learning automa-
ton denoted by A;, which has a finite action set
a,, is associated to cell ¢ (fori = 1,...,n) of CLA.
Let cardinality of a; be m; and the state of CLA
represented by p = (9’1,9’2, .. ’Bln)l’ where p, =
(pi1y - --,Pim;)" 1s the action probability vector of
A;. It is evident that the local environment for each
learning automaton is the learning automata re-
siding in its neighboring cells. From the repeated
application of simple local rules and simple learn-
ing algorithms, the global behavior of CLA can be
very complex.

The operation of CLA takes place as the fol-
lowing iterations. At iteration k, each learning
automaton chooses an action. Let a; € a; be the
action chosen by A;. Then all learning automata
receive a reinforcement signal. Let 3; € 8 be the
reinforcement signal received by A;. This rein-
forcement signal is produced by the application of
local rule F? (tjyz s Qitzy - Qirz.) — 3. The
higher value‘f /3; means that the chosen action
of A; is more rewarded. Since each set q; is fi-
nite, rule F(ayz,53Qitz, - -, Qirz. ) — [ can
be represented by .a hyper matrix of dimensions
my X'mg X --+X my. These n hyper matrices to-
gether constitutes what we call the rule of CLA.
When all of these n hyper matrices are equal, the
rule is uniform; otherwise the rule is nonuniform.
For the sake of simplicity in our presentation,
the rule F'(cyz,, itz --->Qitz,) is denoted
by F(ay,a,...,am). Based on set 3, the CLA
can’'be classified into three groups: P-model, Q-
model, and S-model Cellular learning automata.
When g = {0,1}, we refer to CLA as P-model
cellular learning automata, when 8 = {by,..., b},
(for I < 00), we refer to CLA as @Q-model cellular
learning automata, and when § = [by, bs], we refer
to CLA as S-model cellular learning automata. If
learning automaton A; uses learning algorithm
L;, we denote CLA by the CLA(Ly,...,L,). If
L; = L foralli =1,---,n, then we denote the
CLA by the CLA(L).

In order to analyze the behavior of the CLA, in
the following subsections we give some definitions
and notations.

2.1 Definitions and Notations

In this subsection, we give some definition and de-
rive some primary results regarding CLA which
will be used later for the analysis of CLA.

Definition 3 A configuration of CLA is a map
K : Z% — p that associates an action probability
vector with every cell. We will denote the set of all
configurations of A by K(A) or simply K.

The application of the local rule to every cell allows
transforming a configuration to a new one.

Definition 4 The global behavior of a CLA is a
mapping G : K — K that describes the dynamics



of CLA.

Definition 5 The evolution of CLA from a given
initial configuration p(0) € K is a sequence of
configurations {p(k)}r>0, such that p(k + 1) =
Glp(k))-

CLA may be described as a network of LA assigned
to the nodes of a graph (usually a finite and regular
lattice). Each node is connected to a set of nodes
(its neighbors), and each LA updates its action
probability vector at discrete time instants, using
a learning algorithm and a rule which depends on
its own action and that of its neighbors.

Definition 6 A CLA is called synchronous if all
the LA are activated at the same time and asyn-
chronous if at a given time only some LAs are ac-
tivated.

Definition 7 A CLA is called uniform if the
neighborhood function and the local rule are the
same for all cells of CLA.

Definition 8 A rule is called uniform if the rule
for all cells are the same; otherwise it is call nonuni-
form.

Definition 9 A configuration p is called deter-
ministic if the action probability vector of each
learning automaton is a unit vector; otherwise it
is called probabilistic. Hence, the set of all deter-
ministic configurations, K*, set of probabilistic
configurations, K, in CLA are

K*= {I_)|B = (91171_7127 .- ’B»In),’l_)i = (pila s 7pim,-)la
Piy =0o0r 1 Vy,i,» piy =1Vi}
Yy
and
K= {I_)|B = (91179127 .- ’B»In),’l_)i = (pila Q& 7pim¢)la

0<py<1 Vy,i,Zpiy =1Vik
y
respectively.

In the rest of this sectiony we give some definition
and derive some results regarding CLA which will
be used later for the analysis of CLA.

Definition 10 The average reward for action r of
automaton A; in a CLA with configuration p € K
is defined as

dir(p) = Z...ZFi(r,yg,...

Y2

7yﬁz) H Dy, » (2)
1EN(3)
1#£i
and the average reward for learning automaton A;
s equal to

D; (1_7) = Z dir (2)pir- (3)
T

The above definition implies that if learning au-

tomaton A; is not a neighboring learning automa-

ton for A;, then d;;(p) does not depend on p;-

Definition 11 A configuration p € K is compat-
ible providing

Z dir (2)pir > Z dir (B)Qir (4)

for all configurations ¢ € K and all cells i. The
configuration p € K is said to be fully compatible,
if the above inequalities are strict.

The compatibility of a configuration implies that
no learning automaton in CLA have any reason to
change its action.

Definition 12 A configuration p € K is admissi-
ble providing

Di(p) > Di(g)
for all configurations g € K and all cells i.

(5)

The compatibility is a local concept and can be
calculated by looking only into the neighboring
learning automata, but the admissibility is a global
concept.

Corollary 1.Admissibility implies compatibility
but the converse.is not true, i.e, every admissible
configuration is compatible but every compatible
configuration is not necessarily admissible.

Proof. The proofis trivial from definitions 11 and
12.

Definition 13 Total average reward for the CLA,
which is the sum of the average reward for all the
learning automata in the CLA, for configuration
p €K is defined as

D(p) = Di(p). (6)
Corollary 2 A configuration p € K is admissible
if and only if D(p) > D(q) for allq € K.

Proof. The proof is trivial by looking definitions
12 and 13.

Remark 1 With the approach given in this paper,
the probability of different configurations are up-
dated according to a learning algorithm that can be
considered as hill-climbing in probability space. At
every stage, the change in probabilities are such that
total average reward is improved monotonically in
expected sense.

Lemma 1 CLA has at least one compatible con-
figuration.

Proof. The proof of this Lemma is given in [22].

Lemma 2 Let p € K be a compatible configura-
tion. Then for each i, we have

dir(p) = Di(p),

for all r such that p;- > 0.



Proof. The proof of this Lemma is given in [22].

Lemma 3 Configuration p € K is compatible if
and only if
dir(p) < Di(p),

for all i and r.
Proof. The proof of this Lemma is given in [22].

This lemma provides a means of finding compati-
ble configurations in the CLA.

Theorem 1 A configuration p € K is compatible

if and only if 32, >~ diy(p) [Piy — iy] > 0 holds for
allg € K.

Proof. The proof of this Lemma is given in [22].

This Theorem states that, when the action prob-
ability vector of all learning automata except the
specific 4; are held fixed, then the configuration
reached by the CLA at the point, where the aver-
age reward of A; is maximum, is compatible.

Theorem 2 A corner p = (Qtl,gt2, . ,Qtn)l 8
compatible if and only if
Fi(tlat%"'atm)>Fi(rat27 7tm)

for allr # t;.
Proof. The proof of this Lemma is given in [22].

3 Synchronous Cellular Learning Au-

tomata

In this section, we analyze the synchronous CLA in
which all learning automata use the Lg_ 7 learning
algorithm. We denote this CLA by S-=CLA(Lg_r).
Using Lr—r learning algorithm, process {p(k)}r>o0
is Markovian and can be described by the following
difference equation.

p(k +1) = p(k) + ag(p(k), B(K)), (7)

where (k) is composed of components ;, (k) (for
1 <i<mand 1l <y < m;), which are de-
pendent on p. g represents the learning algorithm,
a is a M x M diagonal matrix with a;; = a;
for Y21 my < i < Si_, my, and a; represents
the learning parameter for learning automaton A;.
Now, define

Ap(k) = E [p(k + 1) |p(k)] - p(k). (8)
Since {p(k)}r>0 is Markovian and (k) depends
only on p(k) and not on k explicitly, then Ap(k)

can be given by a function of p(k). Hence, we can
write

9)

Now using Lgr-_r algorithm, the components of
Ap(k) can be obtained as follows.

Apiy (k) = aipiy (k pr J{E [Biy (k)] — E [Bir (K)]}
r#y

= aipiy (k) [diy(p) — Di(p)] (10)

= ai fiy (p)- (11)

For different values of a, equation (7) generates
different process and we shall use p®(k) to denote
this process whenever the value of a is to be spec-
ified explicitly. Define a sequence of continuous-
time interpolation of (7), denoted by p®(t) and
called interpolated process, whose components are
defined by

p,"(t) = p, (k) t € [kas, (k + 1ag,(12)

where a; is the learning parameter of the Lpr_;
algorithm for learning automaton A;. The objec-
tive is to study the limit of sequence {p*(t)}+>0
as max{a} — 0, which will be a good approxi-
mation to the asymptotic behavior of (12). When
learmng parameter a; is sufficiently small for all
i = 1;2,...,n, then equation (9) can be writ-

ten_ as the followmg ordinary differential equation
(ODE).

p=4p), (13)
where p is composed of the following components.
iy _ sy (p) - D 14

a Diy [ zy(ﬂ) Z(B)] (14)

We are interested in characterizing the long term
behavior of p(k) and hence the asymptotic behav-
ior of ODE (13). The analysis of process {p(k) } x>0
is done in two stages. In the first stage, we solve
ODE (13) and in the second stage, we character-
ize the solution of this ODE. The solution of ODE
(13) approximates the asymptotic behavior of p(k)
and the characteristics of this solution specify the
long term behavior of p(k). The following theorem
gives the asymptotic behavior of p* as max{a} is
sufficiently small. We show that the sequence of
interpolated process {p”(t)} converges weakly to
the solution of ODE (13) with initial configuration
p(0). This implies that asymptotic behavior of p(k)
can be obtained from the solution of ODE (13).

Theorem 3 Sequence {p®(.)} converges weakly to
the solution of

— =4

with initial condition X (0) =
Xo = p*(0) and a = max{a}.

(15)

Xo as a — 0, where

Proof. The proof of this Lemma is given in [22].



This theorem enables us to understand the long
term behavior of p(k). This theorem implies that
for small fixed learning parameters for learning au-
tomata, the deviation of p(k) from X (.) over finite
time interval will be made as small possible as.

Remark 2 The interpolated process {p®(t) }+>o is
a sequence of random variables that takes values
from D™1%--XMn qphere DMX--XMn g the space
of all functions that, at each point, are continu-
ous on the right and have a limit on the left over
[0,00) and take values in K, which is a bounded
subset of R™%--*™Mn_ Let hp(.) be a function over
Dmrx-Xmn qnd given by

hr(Y) = sup |[Y() — X(#)]],

0<t<T

for every T < oo. It must be shown that with prob-
ability increasingly close to unity as max{a} de-
creases, p(k) follows the solution of ODE (13),
X(t), with an error bounded above by some fized
€ > 0. This result can be specialized to character-
ize the long term behavior of p(k), when the initial
configuration, p(0), is in the neighborhood of an
asymptotically stable compatible configuration. Let
p° be the equilibrium point to which the solution of
ODE (13) when the initial condition is p(0). Using
the Theorem 4, we have E [hy(p)*] — E[hy(X)]
as max{a} — 0, where X is the solution of ODE
(13). Using this and the nature of interpolation,
given in (12), it is implied that for the given initial
configuration and any € > 0 and integers ki1 and ko
(0 < k1 < ko < o0), there exists a ag such that

E| sup
ky <k<ks

|lp(k) —p°||| <€  Va < ao,

where a = max{a}. Since p° is an asymptotically
stable equilibrium point of ODE (13), then for all
initial configurations in small neighborhood of p°,
the CLA converges to p°. B

In the following subsections, we first find the equi-
librium points of ODE(13), then study the sta-
bility property of equilibrium: peints of ODE (13),
and finally state a theorem about the convergence
of the CLA.

3.1 Equilibrium Points

The equilibrium points of equation (10) are those
points that satisfy the set of equations Ap;; (k) = 0
for all 7, j, where the expected changes in the prob-
abilities are zero. In other words, the equilibrium
points are zeros of f (p), which are studied in the
following two lemmas.

Lemma 4 All the corners of K are equilibrium
points of f(.). All the other equilibrium points p of

f(.) satisfy

diy(p) = dir(p), (16)
forallr,y € {1,2,...,m;}, and foralli =1,... n.

Proof. The proof of this Lemma is given in [22].

Lemma 5 All compatible configurations are equi-
librium points of f(.).

Proof. The proof of this Lemma is given in [22].

3.2 The Stability Property

In this subsection we characterize the stability
of equilibrium configurations of CLA, that is the
equilibrium points of the ODE (13). From the
lemmas 4 and 5, all the equilibrium points of (13)
are known. In order to study the stability of the
equilibrium points of (13), the origin is transferred
to the equilibrium point under consideration and
then the linear approximation of the ODE is stud-
ied. The following two lemmas are concerned with
the stability properties of the equilibrium points
of ODE (13).

Lemma 6 A cornerp® € K* is a fully compatible
configurationsif and only if it is uniformly asymp-
totically stable.

Proof. The proofiof this Lemma is given in [22].

Lemma 7 Non-compatible equilibrium points of
f(.) are unstable.

Proof. The proof of this Lemma is given in [22].

Remark 3 In lemmas 6 and 7, the solution of
ODE (13) well characterized and it is shown that
full compatibility implies uniformly asymptotic sta-
bility of the corners. In order to obtain necessary
and sufficient conditions for uniformly asymptotic
stability, it is essential to consider in detail the
nonlinear terms in the differential equation, which
appears to be a difficult problem.

3.3 Convergence Results

We study the convergence of CLA for the following
four different initial configurations, which covers
all points in K.

(1) p(0) is close to a compatible corner p°. By
Iemma 6, there is a neighborhood around p°
entering which, the CLA will be absorbed by
that corner. Thus, the CLA converges to a
compatible configuration.

(2) p(0)is close to a non-compatible corner p°. By
lemma 7, no matter how small neighborhood
we take around p°, the solution of (13) will
leave that neighborhood and enter K — K*.
The convergence when the initial configura-
tion is in K — K* is discussed in case 4 below.

(3) p(0) € K*. Using the convergence proper-
ties of Lr_ s learning algorithm [5], no matter
whether p(0) is compatible or not, the CLA
will be absorbed to p(0).



t—1 ¢ |i+1f - n

Fig. 1. The linear CLA.

(4) p(0) € K—K*. The convergence results of the
CLA for these initial configurations is stated
in theorem 4.

Theorem 4 Suppose there is a bounded differen-
tial function D : R™t+tmm R such that for
some constant ¢ > 0, %(9) = cdi (p) for all i
and r. Then CLA for any initial configuration in
K — K* and with sufficiently small value of learn-
ing parameter (max{a} — 0), always converges to

a configuration, that is stable and compatible.

Proof. The proof of this Lemma is given in [22].

Remark 4 If the CLA satisfies the sufficiency
conditions needed for Theorem 4, then CLA will
converge to a compatible configuration. When the
CLA doesn’t satisfy this sufficiency condition, con-
vergence to compatible comfigurations cannot be
guaranteed and the CLA may exhibit a limit cycle
behavior [23].

4 Synchronous Cellular Learning Au-
tomata using Commutative Rules

In this section, we study the behavior of the CLA
when the commutative rules are used. Commuta-
tivity is a property of hyper matrix F? as given in
the following definition.

Definition 14 Rule Fi(aiiz,,--
called commutative if and only if

 Qitzn), 08

Fi(ai-‘rila R ai+.im) =
F' Qi) Qitars - Qigamor) =
e = Fl(ai+f27ai+i3a"'7ai+i1)' (17)

In order to simplify the algebraic manipulations,
we give the analysis is given for linear CLA. The
linear CLA, as shown in figure 1, uses the neigh-
borhood function N (i) = {i — 1,4,i + 1}. The fol-
lowing theorem is an additional property for com-
patible configurations in CLA using commutative
rules.

Theorem 5 For a CLA, which uses a commuta-
tive rule, a configuration p at which D(p) is a local
mazimum, then p is compatible.

Proof. The proof of this Lemma is given in [22].

Remark 5 In general, when rules of CLA are not
commutative, local mazima for D(p) still exist, but
they may not be compatible.

Now, using the analysis given in section 3, we can
state the main theorem for the convergence of the
CLA when it uses commutative rules.

Theorem 6 A synchronous CLA, which uses uni-
form and commutative rule, starting from p(0) €
K — K* and with sufficiently small value of learn-
ing parameter, (max{a} — 0), always converges
to a deterministic configuration, that is stable and
also compatible.

Proof. The proof of this Lemma is given in [22].

Remark 6 From the proof of the Theorem 6, we
can conclude that the CLA converges to one of its
compatible configurations, if any. If this compati-
ble configuration is unique, then CLA converges to
this configuration for which D(p) is the mazimum.
If there are more than one compatible configura-
tions, then the CLA depending on the initial config-
uration p(0) may converge to one of its compatible

configurations for which D(p) is a local mazimum.

Remark 7 Theorem 6 guarantees that limit cycle
for CLA does not exist and CLA always converges
to an equilibrium of ODE.

5 Numerical Examples

This section discusses patterns formed by the
evolution of cellular learning automata from ran-
dom initial configuration, chosen by the learning
automata in cells. Different cellular learning au-
tomata rules are found to yield different configu-
rations. For the sake of simplicity in our presenta-
tion, we use the following notation to specify the
rules for CLA for which each cell has a learning
automaton with m actions. The actions of each
learning automaton are represented by integers in
interval [0, m —1]. Hence, the configuration of each
cell and its neighbors forms a m digits number in
interval [0, m™ — 1] with m™ possible values. The
value of reinforcement signal for all of the above
m™ configurations constitute an m™ bit number.
Then the rule identified by decimal representation
of this m™-bit number. For the sake of simplic-
ity in our presentation, we use notation (j),, to
specify the rules in the CLA, where j is a decimal
representing the rule and m is the number of ac-
tions for each learning automaton. For example,
the following table represents the rule 22 for a lin-
ear CLA with two-actions learning automata and
represented by (22).. Each of the eight possible
sets configuration for a cell and its neighbors ap-
pear on the upper row, while the lower row gives
the value of the reinforcement signal to be taken
to the central cell on the next time step.

In the experiments presented below, the syn-
chronous CLA are considered. Figures 2 through
6, show the time-space diagram evolution of CLA
using commutative rules with 20 cells and a two-
actions Lr_r learning automaton in each cell.

Figure 7, shows the time-space diagram evolution
of CLA using noncommutative rules with 20 cells
and a two-actions Lgr_; learning automaton in
each cell.



Table 1:
The scheme for the rule numbering for two actions LA.

Configuration | Reinforcement Signal
111 0
110 0
101 0
100 1
011 0
010 1
001 1
000 0
FE
rule (1), rule (22),

Fig. 2. Time-space diagram of synchronous CLA using
commutative rules

rule (23), rule (126),

Fig. 3. Time-space diagram of synchronous CLA using
commutative rules

rule (127),

rule (128),

Fig. 4. Time-space diagram of synchronous CLA using
commutative rules

.

rule (150), rule (151),

Fig. 5. Time-space diagram of synchronous CLA using
commutative rules

rule (232), rule (233),

Fig. 6. Time-space diagram of synchronous CLA using
commutative rules

rule (180), rule (190),

Fig. 7. Time-space diagram for CLA

The simulation results show that the CLA con-
verges to a configuration in K* rather than to a
configuration in K — K*.

6 Conclusions

In this paper, the formal description of cellular
learning automata is given and its convergence be-
havior is studied. It is shown that for commutative
rules, the cellular learning automata converges to a
stable configuration for which the average rewards
for the CLA is maximized. The numerical results
also confirms the theory.

It is apparent that admissible compatible is the
most interesting configuration to be searched.
However, the CLA(Lgr_r) using commutative
rules converges only to one of compatible configu-
rations which are the local maxima of D. Hence,



CLA(Lgr—_r) cannot always converge to admissi-
ble configuration. The convergence to admissible
compatible configuration is possible if we allow
some information exchange, in addition to the
information exchange for calculating the rein-
forcement signal, among the learning automata.
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