
Arc
hi

ve
 o

f S
ID

A New Parametric Linear Adaptive Color Space and its

PCA–based Implementation

A. Abadpour and S. Kasaei
Sharif University of Technology

abadpour@math.shrif.edu and skasaei@sharif.edu

Abstract

In many vision applications, color is an impor-
tant cue that must be applied very fast. In this
paper, after giving a brief review on 12 different
standard color spaces, the proposed parametric
linear adaptive color (PLAC) space is defined.
A color-based segmentation process is performed
on these color spaces. Experimental results show
that the PLAC can be applied at least three times
faster than the standard color spaces. In addition,
with 10% higher distinguishing power, the PLAC
shows the fail rate of half as much of the standard
spaces. The best advantage of the PLAC is its
ability to remove the entire background in 75%
of the objects; compared to the low 1.69% of the
standard spaces. As the PLAC needs the semiau-
tomatic tuning stage, the proposed PCA−PLAC
method is introduced encapsulating the advan-
tages of the PLAC with less required user super-
vision even than the standard color spaces. The
results show the superiority of the proposed color
spaces, while the PCA−PLAC even outperforms
the PLAC.

Keywords: Adaptive color space, principle com-
ponent analysis, color segmentation, color percep-
tions, color attributes.

1 Introduction

Color is the way the human visual system (HVS)
perceives a part of the electromagnetic spectrum
approximately between 380nm and 780nm. A
color space is a method to code a wave in this
domain.

1.1 Standard Color Spaces

Although due to practical reasons, RGB color
space is widely used in the science and technology,
when dealing with natural images it suffers from
high correlation between its components: 0.78 for
rBR, 0.98 for rRG and 0.94 for rGB [1]. Also
the RGB color space has proved to be psycholog-
ically not intuitive [2] in the way that human has
problems imagining pure colors Red, Green and
Blue as defined in RGB. Also, RGB is percep-
tually non-uniform [2, 3] because the correlation
between the perceived difference of two colors and
the Euclidian distance in RGB space is too low.

Different color spaces proposed in the literature
with different aims, could be informally catego-
rized into three major categories of HVS-based
(including RGB; opponent and phenomenal color
spaces), application specific, and CIE color spaces
for better understanding [4].

In the late 19th century, Ewald Hering proposed
the opponent color theory [4]. The relating color
space was modelled by different researchers like
Judd, Adams, Hurvich, Jamson and Guth [4], An-
other One is an excellent color space proposed
by Ohta [5] as a very good approximation of the
Karhunen-Loeve transformation of the decorre-
lated RGB space (The color spaces is sometimes
called I1I2I3):


I1 = 1

3 (R + G + B)
I2 = 1

2 (R − B)
I3 = 1

4 (2G − R − B)
(1)

Phenomenal color spaces, using attributes of hue
and saturation (based on Newton’s color circle)
have been proved to be the most natural way to
describe human sense of color [2]. There exists
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many different color models of this category de-
fined in the literature; such as the HSI (2) [6]
and HSV (3) [7] [8]. Although the phenomenal
color spaces are very intuitive, but they have in-
herited the device-dependent tendency from the
mother space RGB along with a hue discontinu-
ity around 2π, and the main shortcoming of non-
uniform perception.


I = 1

3 (R + G + B)
S = 1 − min(R,G,B)

I

H = cos−1
( 1

2 [(R−G)+(R−B)]√
(R−G)2+(R−B)(G−B)

) (2)




V = max(R,G,B)
S = max(R,G,B)−min(R,G,B)

max(R,G,B)

H =
{

h,B ≤ G
2π − h,B > G

h = cos−1
( 1

2 [(R−G)+(R−B)]√
(R−G)2+(R−B)(G−B)

) (3)

Application specific color spaces are those in-
vented for special commercial purposes includ-
ing the spaces used in printing systems (CMY K
(4)) [9], television systems (Y UV (5) [10], Y IQ
(6) [11], Y CbCr (7) [12]) and photo systems
(Y CC). These color spaces are quite nonintuitive
and perceptually non-uniform.



K = min(C̃, M̃ , Ỹ )
C = C̃−K̃

1−K̃

M = M̃−K̃
1−K̃

Y = Ỹ −K̃
1−K̃

C̃ = 1 − R, M̃ = 1 − G, Ỹ = 1 − B

(4)

{
Y = 0.30R + 0.59G + 0.11B
U = −0.15R − 0.29G + 0.44B
V = 0.62R − 0.52G − 0.10B

(5)

{
Y = 0.30R + 0.59G + 0.11B
I = 0.60R − 0.28G − 0.32B
Q = 0.21R − 0.52G + 0.31B

(6)




Y = 0.30R + 0.59G + 0.11B
Cb = 0.56(B − Y )
Cr = 0.71(R − Y )

(7)

In 1931, CIE laid down the CIE1931 standard to
make a resolution for the device-dependent tender
of RGB color space and others spaces based on it.
The standard leads to the standard CIE −XY Z

as a color space describing the average human
observer (8). In 1976, CIE proposed two color
spaces named officially as CIE − Lu∗v∗ (9) and
CIE − La∗b∗ (10) whose main goals were to pro-
vide a perceptually uniform space, of course later
it was proved that the CIE − Lu∗v∗ is not en-
tirely uniform [13]. The newly defined color space
CIE − L∗HoC∗ (11) is the polar version of the
CIE − La∗b∗ [9].{

X = 0.61R + 0.17G + 0.20B
Y = 0.30R + 0.59G + 0.11B
Z = 0.00R + 0.07G + 1.12B

(8)




L∗ = 116f( Y
Y0

)
u∗ = 13L∗(ú − úWhite)
v∗ = 13L∗(v́ − v́White)
ú = 4X

X+15Y +3Z

v́ = 9Y
X+15Y +3Z

(9)




L∗ = 116f( Y
Y0

)
a∗ = 500(f( X

X0
) − f( Y

Y0
))

b∗ = 500(f( Y
Y0

) − f( Z
Z0

))
(10)




L∗ = 116f( Y
Y0

)

Ho = tan−1
(

b∗
a∗

)
C∗ =

√
a∗2 + b∗2

(11)

Where f(x) in (9) and (10) and (11) is the func-
tion:

f(x) =
{

x
1
3 , x > 0.008856

7.787x + 16
116 , else

(12)

1.2 Color Image Processing

In many applications of vision , color is an im-
portant cue (because it is robust towards changes
in orientation and scaling and can well tolerate
occlusion), but it is often computationally expen-
sive. For example, the RoboCup games are held
in a field officially defined as “a square with green
carpets and white walls in which two teams of four
or five completely black robots are trying to kick a
red ball toward two goals colored in blue and yel-
low respectively” [14]. In this atmosphere, vision
is the essential tool to recognize objects and is
based on the color diversity. For a soccer player
robot, going towards the ball at about 2m/s ve-
locity, processing 16 frames per second results in
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about 30mm error in each frame (500mm error in
any second.), which is a real shortcoming. This
proves the need for an enough accurate algorithm
that is performed fast enough.

There are a few color space comparison articles
in the literature. A recent work [15] considers the
effects of color space selection on the skin detec-
tion performance, reporting that non of the 8 color
spaces of normalized RGB (NRGB also called
NCC), CIE −XY Z, CIE −La∗b∗, HSI, spher-
ical coordinate transform (SCT ), Y CbCr, Y IQ,
and Y UV seemed to respond better than others.
Another paper [16] investigates 5 color spaces in-
cluding RGB, Y IQ, CIE−La∗b∗, HSV , and Op-
ponent color, and experimentally compares them
in terms of human ability to produce a given color
by changing the coordinates in a given color space,
the paper does not concern the segmentation.

1.3 Spotting Colors

The first step towards recognizing an object in a
captured image is to distinguish it from the back-
ground. Although different segmentation meth-
ods have been proposed (For two new methods
see [17, 18].), but the accuracy and speed of such
algorithms greatly depend on the selection of the
feature vector describing the color information.

An object-in-image segmentation process is
meant to detect the area containing the object;
and to extract the edges between the object and
the background. When using such method, the re-
sult may include some parts of other objects. This
is sometimes inevitable but for performance rea-
sons, an accurate segmentation task is preferred
which completely removes the background.

It must be denoted that segmentation pro-
cesses, that work on color information of each
pixel independent of the neighborhood informa-
tion are more preferred for their byte-steam tender
and algorithm speed.

Spotting colors concerns with the accuracy with
which objects of a specific single color can be iden-
tified in a complex image [19].

Although many color-based object recognition
methods has been proposed [20, 21, 22, 23] but
generally they work on a multicolored object. For
example Yullie [22] proposed an algorithm for de-
tecting street signs. The method uses the relative
appearance of the two colors in the signs. Algo-

rithms proposed by Ennesser [21] and Funt [23]
uses color-edge histograms for recognizing a mul-
ticolored object.

Although many sophisticated methods for color
space clustering exist in the literature, but we
selected a simple comparison method, assuming
that the selected color space is well-defined. A re-
cent work [24] uses 6 marginal values for the three
channels but proves that the common comparing
operation is not suitable for pipelining; it proposes
the use of a lookup table instead and reports the
application of such method in a soccer robot with
2MB of RAM . As the method needs a large mass
of memory and is slow and tedious when trying to
learn another region to the system, we limited the
comparison to just one channel, putting empha-
size on proper color space selection but making
the whole operation faster.

2 Principle Component
Analysis

The idea of reducing the color space dimension
is not a new idea; many researchers have re-
ported benefits of illumination coordinate rejec-
tion (For an example see [15], for further informa-
tion see [25]).

The principle component analysis (PCA) [26]
(For more information see [27, 28].) is widely
used in signal processing, statistics, and neural
networks. In some areas, it is called the (discrete)
Karhunen-Leove transform (in continuous case) or
the Hotelling transform (in discrete case).

The basic idea behind the PCA is to find the
components s1 . . . sn, so that they explain the
maximum amount of variance possible by n lin-
early transformed components. By defining the
direction of the first principal component, say w1,
by (13), the PCA can be represented in an intu-
itive way [26].

w1 = arg

(
max |w|=1

[
E{(wT x)2}

])
(13)

Thus, PCA is the projection of the data on the
direction in which the variance of the projection
is maximized. Having determined the first k −
1 principal components, wk is determined as the
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principal component of the residual stated as [26]:

wk = arg

(
max |w|=1

[
E{(wT ∆k−1)2}

])
(14)

Where ∆k−1 in (14)is defined as:

∆k−1 = x −
k−1∑
i=1

wi
T xwi (15)

The principal components are then given by si =
wT

i x [26].
In practice, the computation of wi can be sim-

ply accomplished using covariance matrix C =
E{(x− x̄)(x− x̄)T }. The wn is the eigenvector of
C corresponding to the nth largest eigenvalue [26].

The basic goal in PCA is to reduce the data
dimension. Thus, one usually chooses n � m.
Indeed, it can be proven that the representation
given by PCA is an optimal linear dimension re-
duction technique in the mean-square sense. Such
a reduction in dimension has important benefits.
First, the computational overhead of the subse-
quent processing stage is reduced. Second, noise
can be reduced, as the data not contained in the n
first components may be mostly due to noise [26].

3 Proposed Methods

3.1 Spotting Colors

A simple color spotting task is assumed as dis-
cussed in section 1.3 and a new parametric linear
adaptive color (PLAC) space is introduced that
performs the task more accurately and more ro-
bust compared to 12 standard color spaces. As
PLAC needs tedious tuning job, a new Princi-
ple Component Analysis Based Parametric Linear
Adaptive Color PCA−PLAC space is introduced
that encapsulates the promising results of PLAC
with a tuning method even easier than the stan-
dard color spaces’.

3.1.1 Standard color spaces

Although any standard color space is defined as a
function G : R3 → R3, in this paper we face each
channel of a color space independently. So we are
concerned to perform the classification according
to a function X : R3 → R. In order to comply

with notions of (17) and (21), the discrimination
function is defined as:

fX
C,T (�c) =

{
1, |X(�c) − C| ≤ T
0, else

(16)

Where X(·) is the function producing one of the
channels of a selected color space out of the coor-
dinates of �c in RGB space.

3.1.2 Parametric Linear Adaptive Color
Space

Most of the standard color spaces suffer from the
disadvantageous fixed structures that makes them
inefficient in treating special odd-shaped loci in
the color space. This was the main motivation
for defining the parametric linear adaptive color
(PLAC) space formulated in (17) with 5 user-
selected parameters ar, ag, ab, C, T .




fPLAC
ar,ag,ab,C,T (�c) =

{
1, |�aT�c − C̃| ≤ T̃
0, else

C̃ = Σax<0ax + C Σ|ax|
255 , T̃ = T Σ|ax|

255

�a = ( ar ag ab )T

(17)

PLAC is a 1−D color space; in contrast with the
ordinary 3 − D and 4 − D color spaces.

3.1.3 Principle Component Analysis-
Based Parametric Linear Adaptive
Color Space

As the tuning phase of PLAC needs massive user
work, a new color space named as principle com-
ponent analysis-based parametric linear adaptive
color (PCA − PLAC) space is also introduced.

Rather than the numerical parameters tuned by
the user in PLAC and other color spaces, PCA−
PLAC extracts the information from the scene.
When trying to use PCA−PLAC, one must give
a rectangle of the desired segment to the algorithm
(Let’s call the region as R.). By forming the 3 ×
A (A is the area of R) matrix S containing the
RGB values of all pixels in R , the vector �η is
computed by row averaging of S to give E�c∈R{�c}
as a 3 × 1 vector. This vector is used to produce
the matrix D as the center oriented version of S
. The eigenvalues of the matrix C = DT D are
computed and the eigenvector corresponding to
the largest eigenvalue is selected to be �v .
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The reconstruction error(RE) of a point re-
garding to the region R is defined as (18) in which
smaller values shows more tendency. in (18), 〈�v〉is
a custom norm function defined in (19). The
marginal reconstruction error is computed as (20)
and a tolerance is asked from the user (λ). The
classification function for an arbitrary point is de-
fined in (21).

eR(�c) = e�v,�η(�c) = 〈 �́v[�c − �η]�v − [�c − �η]〉 (18)

〈�v〉 =
1
N

ΣN
i=1|vi| (19)

ẽR = argc∈R{P (eR(�c) < e) > 0.95} (20)

fPCA−PLAC
R,λ (�c) =

{
1, eR(�c) ≤ λẽR

0, else
(21)

It must be emphasized that although PCA −
PLAC needs user to draw a rectangle on the se-
lected object, there is only one user-selected pa-
rameter to be tuned in PCA−PLAC in contrast
with the 5 parameters in PLAC. It is worth men-
tioning that tuning PCA − PLAC is more intu-
itive compared to tuning PLAC.

To find out the repeatability of PCA−PLAC,
the correlation between different results of spot-
ting one object was computed as (22), along with
a parameter showing the range of the tolerance in
different tests on the same object as (23).

δI1I2 = 2
ΣΣI1x,y

I2x,y

ΣΣ(I1x,y
+ I2x,y

)
(22)

δ̃λ =
δλ

λ̄
(23)

3.1.4 Comparison Method

The 12 different color spaces under investigation
are RGB, CMY K, HSI, I1I2I3, CIE − La∗b∗,
CIE − L∗HoC∗, CIE − Lu∗v∗, CIE − XY Z,
Y CbCr, Y IQ and Y UV . According to the catego-
rizes of color spaces declared in section 1.1, There
are four HVS-based, four application-specific, and
four CIE color spaces involved in this study.

For more convenience all channels were consid-
ered as subsets of [0 . . . 255]3 and all singular point
were defined to correspond to zero value in the
corresponding channels.

The objects in the sample image (See figure
1)were indexed and their areas were calculated

by manual segmentation with repeatedly use of
magic select tool in Adobe Photoshop. To test
the performance of spotting in the pre-described
standard color spaces, after computing the repre-
sentation of the sample image in 12 color spaces
(37 channels), answers to the following questions
were inspected in each of the 37 channels for each
of the 8 objects:

1. How much is the most percentile of the ob-
ject area when it is cut out of the image with
the best-selected set of parameters? (Q1 ∈
[0 . . . 100])

2. When trying to answer the first question, is
the background removed completely, without
considerable intrusion? (Q2 ∈ {0, 1} mapped
to [0 . . . 100] in statistics.)

Also a zero-one fail rate parameter was defined,
showing the situations where the method is un-
able to distinguish the border of the object. The
answers to these questions were acquired and sta-
tistically analyzed.

The tests were performed by a subject with 3
years expertise on such segmentation tasks. User
was using a graphic user interfaces(GUI) devel-
oped in MATLAB 6.5 with scroll bars for tuning
parameters (C,T in standard color spaces, ar, ag,
ab , C, and T in PLAC and λ in PCA−PLAC).
He was looking at the original image and the spot-
ted image in two aside windows.

Experimental results are shown in section 4.2
and section 4.3 compares PLAC, PCA−PLAC,
and standard color spaces.

4 Experimental results

4.1 Database

The sample image used in spotting test were taken
from 8 objects (Stapler, Infant, Red Ball, Tin
Opener, Spring, White Ball, Blue Ball, and Ap-
ple) with different colors put on a smooth surface
in the daylight by a digital camera (Figure 1).

4.2 Results

All algorithms were developed in MATLAB 6.5
with highly optimized code, on an 1100 MHZ Pen-
tium III personal computer with 256MB of RAM.

Answers to the predefined questions were ac-
quired in 37 channels of the 12 color spaces (The
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Figure 1: An image taken from eight objects with
different colors.

table was too large to be printed in this paper),
also in PLAC (Table 1) and PCA − PLAC (Ta-
ble 2). Tests on the 8 objects were performed 5
times for each object in PCA − PLAC and the
average values of all δij in different tests on the
same object were computed as C along with the
average value of all δ̃λ as ¯̃

δλ (Table 2). Table 3
compares fail rate, Q̄1 , δQ and Q̄2 of the 37 chan-
nels, PLAC and PCA − PLAC.

Table 1: Spotting results in PLAC.
1 2 3 4

Q1 86.1 95.2 72.2 56.8

Q2 100 0 100 100

5 6 7 8

Q1 67.8 - 82.5 99.9

Q2 100 0 100 100

Table 2: Spotting results in PCA − PLAC.
Q̄1 δQ1 Q̄2 δ̃λ C

1 95 4.73 100 19 96.3

2 94.2 5.67 100 17 93

3 88 5.96 100 66 93

4 66.2 3.86 100 17 94.3

5 91.2 4.16 100 6 96.3

6 48.6 8.56 0 31 71.6

7 74.8 5.26 100 50 93.2

8 99.4 0.80 100 36 98

Average 82.17 4.88 87 30.25 92

Std. Dev. 16.78 2.19 30 19.36 8.94

4.3 Discussion

Investigating the Average and standard deviation
of the spotting results in standard channels is in-

sightful. Of course the average value of Q1 for
most channels is higher that 50% but the standard
deviation of channels is too high (42.47%) which
shows that the method may act poor likely. Of
course it must be emphasized that in 73 tests the
method was unable to find a reasonable portion
of the object or to distinguish the boarder line,
which leads to the desperate fail rate of 24.66%.

Over the stimuli the situation is even worse. It
is clear that spotting method’s success in standard
color spaces entirely depends on the object. The
best results have been recorded for the apple, the
red ball, the spring, the blue ball and the stapler,
which all make distinct loci in the color spaces.
The worst result has been captured for the white
ball, because it is very similar to the background
in color scheme.

In the 37 ∗ 8 = 296 attempts made for cutting
the desired object out of the background, only
5 were successful to clear the entire area, which
gives the poor mathematical expectation of 1.69%.
This event is also very much depending on the
subject, as 3 out of the 5 has happened on the 7th

object.
In table 1 it is clear that in 6 out of 8 attempts,

PLAC was successful to remove the entire back-
ground, which gives the hopeful result of 75%.
This measure is 87% for PCA− PLAC as shown
in table 2.

PLAC has failed to recognize the object in
12.5% of tests, which is half the fail rate of stan-
dard methods, having in mind that PCA−PLAC
has never failed.

The expectation result of Q1 in PLAC, is
70.06% with standard deviation of 31.68% in con-
trast with the average of 61.03% and standard de-
viation of 42.27% in standard color spaces, show-
ing about 10% better results with a smaller stan-
dard deviation when comparing PLAC to stan-
dard color spaces, making hope that PLAC re-
sponds uniformly in the stimuli range. Table
2 shows even better results for PCA − PLAC
compared to PLAC. The surprising result of
82% expectation value with variance of less than
5% for Q1 and 87% expectation for Q2 when λ
has changed about 30% shows the robustness of
PCA − PLAC. It must be emphasized that the
average correlation is more than 90%.

It must be emphasized that as the two proposed
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PLACs are 1−D color spaces, their computation
time is at least three times less than ordinary 3−D
color spaces. Of course compared to the sophis-
ticated hue-saturation based color spaces, which
use complicated functions, the performance is far
better. Also the PLAC and PCA − PLAC are
very much appropriate for analog implementation
by ordinary circuitry.

The clear disadvantage of PLAC is the tedious
tuning job, which reduces its repeatability and
needs supervision of human observer, a shortcom-
ing that has been removed in PCA−PLAC. It is
easy to see that PCA−PLAC needs only one pa-
rameter to be tuned by the user in contrast with
the two parameters in standard spaces and five
parameters in PLAC, Also user has no intuition
when setting ar, ag, ab, C, T parameters in PLAC
in contrast with the meaningful λ parameter in
PCA − PLAC.

PCA− PLAC has appeared surprising to gain
Q1 = 46.8% for the peculiar 6th object, where all
other methods, even the PLAC have failed.

5 Conclusion

performance of 12 standard color spaces was con-
sidered in this study and two measurements along
with a fail rate were studied in their respective
channels when spotting homogenous regions in
a test image containing 8 different colored ob-
jects. The measurements concerned the maximum
percent of distinguishing power and the back-
ground removal ability of each channel for each
object. Two color spaces PLAC (parametric) and
PCA − PLAC (PCA-based) were proposed and
the same tests were performed on them along with
the repeatability test on the PCA − PLAC. Ex-
perimental results showed that rather than the
first 6 channels (R,G,B,C,M ,Y ), the PLAC and
PCA−PLAC gained lower fail rates. There were
a few channels with the average distinguishing
power higher than the PLAC and only one chan-
nel better than the PCA−PLAC, but the average
result of both of them was much higher than the
standard color spaces. Also, the standard devi-
ation of the distinguishing power in the PLAC
was higher than all others while the results in the
PCA−PLAC were even higher than the PLAC.
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Table 3: Comparison of results in standard color
spaces, PLAC and PCA − PLAC.

Fail Q̄1 δQ1 Q̄2

R 0 60.02 37.62 0

G 0 73.35 31.94 0

B 0 69.99 34.47 12.5

C 0 66.95 30.28 0

M 0 77.58 30.55 0

Y 0 71.84 33.05 0

K 37.5 42.83 39.18 0

H 37.5 52.27 48.79 12.5

S 12.5 77.81 33.19 0

I 25 55.07 43.12 0

H 37.5 55.29 48.23 12.5

S 25 58.50 48.96 0

V 25 47.45 38.48 0

I1 25 55.93 46.65 0

I2 50 46.49 50.44 12.5

I3 37.5 57.42 47.91 0

L 25 60.94 44.01 0

a∗ 37.5 60.97 50.50 0

b∗ 37.5 58.90 48.98 0

L 25 60.94 44.01 0

Ho 37.5 61.80 51.19 0

C∗ 25 65.54 42.65 0

L 25 60.94 44.01 0

u∗ 62.5 34.52 48.06 0

v∗ 37.5 57.62 48.45 0

X 25 58.92 44.58 0

Y 25 62.10 44.53 0

Z 12.5 69.97 37.57 0

Y 12.5 64.52 40.08 0

Cb 12.5 74.34 33.50 12.5

Cr 25 68.16 42.92 0

Y 12.5 72.36 40.20 0

I 37.5 48.62 45.83 0

Q 50 43.41 48.78 0

Y 12.5 70.78 41.27 0

U 12.5 84.43 34.41 0

V 50 49.28 52.69 0

Average 24.66 61.03 42.47 1.69

PCA − PLAC 0.00 82.18 4.88 87

PLAC 12.5 70.06 31.68 75
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