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Abstract – Although asynchronous circuits 
are accepted as low-power, low-EMI and 
high-performance circuits, the roadblock to 
wide acceptance of asynchronous design 
methodology is poor CAD support, 
especially physical design tool. There are 
few academic design tools for 
asynchronous circuit design and synthesis, 
but there is neither a published tool nor a 
published document on physical design of 
these circuits.   Since there are non-
complementary CMOS circuits in the 
netlist synthesized using Caltech synthesis 
method, the commercial cell-based 
placement tools can’t be used. In this paper 
we have presented a design flow for 
placement of asynchronous circuits at 
transistor-level considering their timing 
constraints.   
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Physical Design, Placement and Isochronic 
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1- Introduction 

One of the common timing models used 
in asynchronous circuit design is the QDI 
(quasi-delay insensitive) timing model 

proposed by Caltech research group [1]. In 
this model the circuit described in CHP 
(Communicating Hardware Process) is 
compiled to a set of PRs (Production Rule). 
In this set each PR is a pull-up or pull-
down network of either a complementary 
or a non-complementary CMOS circuit in 
which the pull-up and pull-down networks 
are not dual. After circuit synthesis to the 
PR set, an operator reduction algorithm, is 
used to compile this set to a set of standard 
operators such as NAND, NOR and C-
ELEMENT and a smaller set of PRs that 
otherwise couldn’t be mapped to 
complementary standard operators. Due to 
these non-complementary characteristics in 
asynchronous circuits designed with the 
QDI timing model a cell-based layout 
synthesis method couldn’t be used for these 
circuits and a transistor-level placement 
algorithm is required.  

Although transistor-level placement 
algorithms are complicated and time 
consuming but transistor-level 
optimizations indicate that synthesized 
layouts using these algorithms are denser in 
area in contrast to cell-based designed 
layouts [2]. Another advantage of 
transistor-level layout synthesis method is 
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the dynamic layout library generated in the 
layout synthesis process. Having a dynamic 
library static pre-designed libraries are not 
required. Relying on the static libraries of 
devices has the following drawbacks [3]: 

1. Limited range of options; not all 
possibilities can be covered in a finite set 
of modules. For example, the library can 
include only several variants of a device, 
among all possibilities. 

2. Process technology change causes 
redevelopment of the whole library of 
devices.  

In this paper we have presented a 
placement tool at transistor level for QDI 
asynchronous circuits that supports, non-
complementary CMOS layout design using 
a hierarchical 2-D row-based method. 
Hierarchical methods such as [4] partition 
the circuit into sub-circuits or clusters, 
thereby decomposing the layout problem 
into two independent set problems: (a) 
generating a layout for each cluster and (b) 
finding a placement of the cluster layouts 
so that the overall cell width is minimized. 
Non-hierarchical approaches are efficient 
for small CMOS cells, however for larger 
cells, their run time increase rapidly. In the 
1-D layout style single rows of P- and N-
type diffusions are arranged in parallel, 
unfortunately this linear arrangement 
model has not been well accepted in 
practical cell design [3]. The main reason is 
that the area is not minimized in many 
cases.  

The key innovations of this work are: 
automatic transistor chaining, transistor 
folding and diffusion merging and then 
clustering the circuit according to the 
merged-diffusion MOS transistors, 
building the layout library dynamically, 
placement considering isochronic forks and 
routability, and technology independent 
layout synthesis supporting design rule 
changes to current process 

Section 2 describes the isochronic fork 
constraints and our contribution for 
satisfying this constraint. Section 3 
presents a brief description of the current 
layout synthesis tools and their limitations. 
Section 4 presents our proposed design 
flow and in Section 5 and 6 the results and 
conclusion are presented respectively. 

2- Problem Definition 

In asynchronous circuits, designed with 
the QDI timing model, there is no timing 
constraint on the circuit except isochronic 
fork constraints. Each isochronic fork is a 
fork in which the differences in delays 
between its two branches, is shorter than 
the delays of the operators to which the 
fork is an input.  In this model, the forks 
that are not acknowledged in all branches 
on both positive and negative transitions 
are considered as isochronic fork. 
Therefore when a transition on a branch is 
acknowledged, it is guaranteed that the 
transition is sensed on all other branches. 
In Figure1, delays of branches 1 and 2 are 
d1 and d2, respectively. Suppose that 
branches 1 and 2 are only acknowledged 
on the positive and negative transitions, 
respectively. So it is required that: 

 

delay) g2 delay, (g1min   d2-d1 <  

 

G1

G2

G

d1

d2

 
 

Figure1. Isochronic fork 
 

In another case, assume that branch 1 is 
acknowledged on both transitions and 
branch 2 is just acknowledged on one of 
the transitions. In this situation, the 
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isochronic fork constraint can be simplified 
as:  

delay) g2 delay, (g1min   d1-d2 <  

Due to the considerable delay of 
interconnects compared to the gate delays 
in the deep submicron technology, 
isochronic fork constraint is becoming a 
critical point in the layout design of 
asynchronous circuits, and cannot be 
satisfied using a commercial synchronous 
layout synthesis tool in which there is no 
assumption for this constraint. In our 
design tool (PERSIA) in order to satisfy 
this constraint, isochronic fork is 
considered as a high weighted parameter in 
cost function of the placement.  

3- Related Works 

Many papers have been published in the 
area of transistor-level layout synthesis 
such as [2, 3, 4, 5, 6, 7], and most of them 
have focused on specific fundamental 
problems related to transistor placement, 
routing and compaction and have described 
layout synthesis systems developed mainly 
to demonstrate their specific innovation. 
Some of these design tools are designed for 
complementary CMOS circuits [4, 5, 6] 
hence cannot be used in QDI circuit layout 
design. In order to use existing design tools 
[2, 3, 7] in layout design of QDI circuits 
they must have the capability of 
distinguishing and considering isochronic 
forks.  

In this paper we have presented a 
placement tool at transistor-level for QDI 
asynchronous circuits that supports non- 
complementary CMOS layout design, and 
satisfies the isochronic fork constraint. 

4- Design Flow 

In this section, we present our 
placement design flow from a transistor-
level netlist to a design rule correct placed 
layout. The diagram in Figure2 is adopted 
as our top-level framework.  

The inputs to our design tool consist of 
a process file, which contains a description 
of design rules and a netlist file containing 
a list of sized transistors and their 
interconnections. The design tool is process 
transparent and the process file is just 
updated for process changes. In the first 
step of our placement process, the input 
netlist is transformed into a cluster netlist. 
At this step, diffusion-merged transistor 
chains and clusters are identified, 
transistors with large widths are folded, 
transistor chain layout and then finally the 
layout of cluster is designed and added to 
the library. As a result of this part we have 
a dynamic layout library of dynamically 
diffusion-merged clusters and also a cluster 
netlist. This netlist is used in a simulated 
annealing-based placement algorithm [8]. 
In the reminder of this paper we discuss 
each step of our design flow in details. 
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supply0 gnd;
supply1 vdd;
power_pmos #(8) tr_0(av_bar, tmpN_0, a0);
power_pmos #(8) tr_1(tmpN_0, vdd, a1);
power_nmos #(2) tr_2(av_bar, gnd, a0);
power_nmos #(2) tr_3(av_bar, gnd, a1);
.
.
.

C NOR2 X Y OUT ;
U1_NOR2 a0 a1 av ;
C NOR2 X Y OUT ;
U2_NOR2 b0 b1 bv ;
C CELEMENT2 X Y OUT ;
U3_CELEMENT2 av bv InputValid;
.
.
.
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Figure2. Design flow
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4.1. Clustering and Pattern Matching 

This step, as the entry point of our 
design flow, focuses on reading the 
netlist and transforming it into clusters 
that are our building blocks from this 
point on. A cluster is a set of connected 
transistor chains that produces an 
intermediate signal of the circuit. Since 
non-hierarchical approaches are efficient 
for a small netlist, Clustering and 
hierarchical approaches are usual 
techniques that are used in most of the 
recent works [2, 4, 6, 9]. Using a 
hierarchical approach and clustering, 
transistor netlist is converted to a cluster 
netlist. As an advantage of this method 
when a cluster layout is once designed, 
layout design of the same clusters in the 
cluster netlist faced later on is avoided 
for, it is already added to the library, 
therefore an optimization in the 
algorithm run time. Due to the fact that 
there are considerable amount of similar 
complementary clusters synthesized 
from Caltech synthesis method such as 
(NAND, NOR, C-Element for 
completion detection circuits) the layout 
synthesis method is simplified to two 
stages: 

1. Layout design of complementary 
clusters once, as soon as they are 
faced. 

2.  Layout design of non-
complementary clusters 
whenever faced. 

Clustering is done in three stages as 
follow: 

• Transistor Chaining: In order to 
minimize the diffusion area of 
series-parallel MOS circuits, we 
have to find a Eulerian trail in the 
diffusion graph. Given a cluster 
netlist, a modified diffusion graph 
G is first generated. This graph 
incorporates the symmetry 

constraints among transistors. Next 
a trail cover on G, which satisfies 
the symmetry constraints in the 
circuit, is found. Two transistor 
chains are shown in Figure3.  
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 Figure3. Transistor chaining  
 

The transistor chaining method used 
here is a variation of the technique used 
by Basaran [9]. 

• Transistor Folding: Given a 
maximum size for PMOS and 
NMOS transistors and transistor 
netlist of each cluster, according to 
method presented by Kim [10], 
cells are synthesized using 
different folding combinations with 
different transistor sizes to 
determine the minimum width 
cluster that meets the specified 
height. As a simple example, in 
Figure4 the PMOS transistor of 
height 12 is folded to two 
transistors of height 6, and 
therefore height minimization an 
area optimization about 1002λ . 

 
(a) 

 

 
(b) 

Figure4. Transistor Folding, (a) before 
folding, (b) after folding 
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• Layout design of the cluster 
according to the diffusion-merged 
folded transistors.  

Area saving in diffusion-merge may 
seem negligible when a few transistors 
are considered. For example as indicated 
in Figure5 the optimized area between 
two minimum size merged MOS 
transistors is about 4002λ  (16 2mµ  in 
0.35µ  technology) 

 

 
Figure5. Diffusion merging 

 
However, when the transistor count 

reaches thousands of transistors, it will 
be a considerable area. In our design 
flow, in order to take advantage of this 
optimization, we are to identify 
transistor chains of shared source/drain 
diffusions. Then considering the size of 
each transistor, chains and cluster 
layouts are designed. According to the 
port positions, there may be a variety of 
layouts for a cluster that are all added to 
the library and used in the placement for 
intra-cluster optimization. In another 
word the positions of the ports are 
specified dynamically in the placement 
for intra-cluster optimization. 

4.2. Global Placement 

Using the cluster netlist and layout 
library from the pervious stage and 
based on a simulated annealing 
placement algorithm, we have generated 
a placement of the circuit considering a 
cost function containing maximum wire 
length, total area and isochronic fork 
constraint as cost parameters. Simulated 
annealing is probably the most well 
developed method available for module 

placement today. Although it is very 
time consuming but yields excellent 
results. This algorithm starts with a 
random placement and in each step using 
a perturb function either displace, mirror 
a module or interchange two modules 
with each other and according to the cost 
function accepts all moves that result in 
a reduction in cost. Moves that result in 
a cost increase are accepted with a 
probability that decreases with the 
increase in cost. A parameter T, called 
the temperature, is used to control the 
acceptance probability of the moves that 
result in cost increase.  Higher values of 
T cause more such moves to be 
accepted. Such as most implementations 
of this algorithm our acceptance 
probability function is given by 

C/T)exp(-∆  where C∆  is the cost 
increase. In the beginning, we set the 
temperature to a very high value so most 
of the moves are accepted. Then the 
temperature is gradually decreased so 
the cost increasing moves have less 
chance of being accepted. Ultimately the 
temperature reduces to a very low value 
so that only moves causing a cost 
reduction are accepted, and the 
algorithm converges to a low cost 
configuration. 

Our cost function is a function of 
maximum wire-length, total area, 
overlap and row length control penalty, 
and the isochronic fork constrain.  

5- Results 

To compare the quality of the layouts 
generated by our design tool (PERSIA), 
we chose 5 manually handcrafted PCHB 
layouts as our benchmarks. These 
designs include a PCHB-AND2/AND4 
(2/4-bit ANDs), PCHB-NOR2/NOR4 
(2/4-bit NORs), and PCHB-BUF4 (4-bit 
buffer). All of these benchmarks have 
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been designed using PCHB-based design 
methodology [11, 12]. The first version 
of our design tool has been applied to 

these benchmarks. The Results are 
summarized in table1.  

 

 
 

Table 1. Experimental Results 
 

Cell Transistors Nets Clusters Manual  Layout  
Area )( 2λ  

PERSIA Layout  
Area )( 2λ  

Improve 

PCHB-NAND2 38 12 7 20336 21420 -5% 
PCHB-NOR2 38 12 7 19795 20916 -5.6% 
PCHB-NAND4 58 24 9 32965 33535 -1.7% 
PCHB-NOR4 58 24 9 31278 31902 -2% 
PCHB-BUF4 128 49 14 49144 50204 -2.1 

 

 

Handcrafted layouts are hand-optimized 
and therefore 1.7% to 5.6% denser than 
automatic layouts designed with our design 
tool, but as it is shown when the number of 
transistors increases the automatic layout is 
comparable to the hand-optimized one. 

6-  Conclusion 

In this paper we have presented a fully 
automatic transistor-level placement tool 
for QDI circuits. Layout synthesis style is 
based on a hierarchical 2-D row-based 
method. It is flexible to handle many 
process technologies, along with the 
capabilities of (a) satisfying isochronic fork 
constraints, (b) dynamic diffusion merging 
for cell width minimization and (c) 
dynamic transistor folding for cell height 
minimization. Although this design tool is 
designed for non-complementary QDI 
asynchronous circuits in which the 
isochronic fork constraint must be satisfied, 
it efficiently handles any netlist of 
transistors of any width and length, 
ignoring the isochronic fork constraint if 
not required. 
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