
A Transistor-Level Placement Tool for Asynchronous Circuits

M. Salehi, H. Pedram, M. Saheb Zamani, M. Naderi, N. Araghi
Department of Computer Engineering, Amirkabir University of Technology

424, Hafez Ave, Tehran 15875, Iran
{salehi, pedram, szamani, naderi, araghi}@ce.aut.ac.ir

Abstract – Although asynchronous circuits
are accepted as low-power, low-EMI and
high-performance circuits, the roadblock to
wide acceptance of asynchronous design
methodology is poor CAD support,
especially physical design tool. There are
few academic design tools for
asynchronous circuit design and synthesis,
but there is neither a published tool nor a
published document on physical design of
these circuits. Since there are non-
complementary CMOS circuits in the
netlist synthesized using Caltech synthesis
method, the commercial cell-based
placement tools can’t be used. In this paper
we have presented a design flow for
placement of asynchronous circuits at
transistor-level considering their timing
constraints.

Keywords: Asynchronous Circuit,
Physical Design, Placement and Isochronic
Fork

1- Introduction

One of the common timing models used
in asynchronous circuit design is the QDI
(quasi-delay insensitive) timing model

proposed by Caltech research group [1]. In
this model the circuit described in CHP
(Communicating Hardware Process) is
compiled to a set of PRs (Production Rule).
In this set each PR is a pull-up or pull-
down network of either a complementary
or a non-complementary CMOS circuit in
which the pull-up and pull-down networks
are not dual. After circuit synthesis to the
PR set, an operator reduction algorithm, is
used to compile this set to a set of standard
operators such as NAND, NOR and C-
ELEMENT and a smaller set of PRs that
otherwise couldn’t be mapped to
complementary standard operators. Due to
these non-complementary characteristics in
asynchronous circuits designed with the
QDI timing model a cell-based layout
synthesis method couldn’t be used for these
circuits and a transistor-level placement
algorithm is required.

Although transistor-level placement
algorithms are complicated and time
consuming but transistor-level
optimizations indicate that synthesized
layouts using these algorithms are denser in
area in contrast to cell-based designed
layouts [2]. Another advantage of
transistor-level layout synthesis method is

Archive of SID

www.SID.ir

the dynamic layout library generated in the
layout synthesis process. Having a dynamic
library static pre-designed libraries are not
required. Relying on the static libraries of
devices has the following drawbacks [3]:

1. Limited range of options; not all
possibilities can be covered in a finite set
of modules. For example, the library can
include only several variants of a device,
among all possibilities.

2. Process technology change causes
redevelopment of the whole library of
devices.

In this paper we have presented a
placement tool at transistor level for QDI
asynchronous circuits that supports, non-
complementary CMOS layout design using
a hierarchical 2-D row-based method.
Hierarchical methods such as [4] partition
the circuit into sub-circuits or clusters,
thereby decomposing the layout problem
into two independent set problems: (a)
generating a layout for each cluster and (b)
finding a placement of the cluster layouts
so that the overall cell width is minimized.
Non-hierarchical approaches are efficient
for small CMOS cells, however for larger
cells, their run time increase rapidly. In the
1-D layout style single rows of P- and N-
type diffusions are arranged in parallel,
unfortunately this linear arrangement
model has not been well accepted in
practical cell design [3]. The main reason is
that the area is not minimized in many
cases.

The key innovations of this work are:
automatic transistor chaining, transistor
folding and diffusion merging and then
clustering the circuit according to the
merged-diffusion MOS transistors,
building the layout library dynamically,
placement considering isochronic forks and
routability, and technology independent
layout synthesis supporting design rule
changes to current process

Section 2 describes the isochronic fork
constraints and our contribution for
satisfying this constraint. Section 3
presents a brief description of the current
layout synthesis tools and their limitations.
Section 4 presents our proposed design
flow and in Section 5 and 6 the results and
conclusion are presented respectively.

2- Problem Definition

In asynchronous circuits, designed with
the QDI timing model, there is no timing
constraint on the circuit except isochronic
fork constraints. Each isochronic fork is a
fork in which the differences in delays
between its two branches, is shorter than
the delays of the operators to which the
fork is an input. In this model, the forks
that are not acknowledged in all branches
on both positive and negative transitions
are considered as isochronic fork.
Therefore when a transition on a branch is
acknowledged, it is guaranteed that the
transition is sensed on all other branches.
In Figure1, delays of branches 1 and 2 are
d1 and d2, respectively. Suppose that
branches 1 and 2 are only acknowledged
on the positive and negative transitions,
respectively. So it is required that:

delay) g2 delay, (g1min d2-d1 <

G1

G2

G

d1

d2

Figure1. Isochronic fork

In another case, assume that branch 1 is
acknowledged on both transitions and
branch 2 is just acknowledged on one of
the transitions. In this situation, the

Archive of SID

www.SID.ir

isochronic fork constraint can be simplified
as:

delay) g2 delay, (g1min d1-d2 <

Due to the considerable delay of
interconnects compared to the gate delays
in the deep submicron technology,
isochronic fork constraint is becoming a
critical point in the layout design of
asynchronous circuits, and cannot be
satisfied using a commercial synchronous
layout synthesis tool in which there is no
assumption for this constraint. In our
design tool (PERSIA) in order to satisfy
this constraint, isochronic fork is
considered as a high weighted parameter in
cost function of the placement.

3- Related Works

Many papers have been published in the
area of transistor-level layout synthesis
such as [2, 3, 4, 5, 6, 7], and most of them
have focused on specific fundamental
problems related to transistor placement,
routing and compaction and have described
layout synthesis systems developed mainly
to demonstrate their specific innovation.
Some of these design tools are designed for
complementary CMOS circuits [4, 5, 6]
hence cannot be used in QDI circuit layout
design. In order to use existing design tools
[2, 3, 7] in layout design of QDI circuits
they must have the capability of
distinguishing and considering isochronic
forks.

In this paper we have presented a
placement tool at transistor-level for QDI
asynchronous circuits that supports non-
complementary CMOS layout design, and
satisfies the isochronic fork constraint.

4- Design Flow

In this section, we present our
placement design flow from a transistor-
level netlist to a design rule correct placed
layout. The diagram in Figure2 is adopted
as our top-level framework.

The inputs to our design tool consist of
a process file, which contains a description
of design rules and a netlist file containing
a list of sized transistors and their
interconnections. The design tool is process
transparent and the process file is just
updated for process changes. In the first
step of our placement process, the input
netlist is transformed into a cluster netlist.
At this step, diffusion-merged transistor
chains and clusters are identified,
transistors with large widths are folded,
transistor chain layout and then finally the
layout of cluster is designed and added to
the library. As a result of this part we have
a dynamic layout library of dynamically
diffusion-merged clusters and also a cluster
netlist. This netlist is used in a simulated
annealing-based placement algorithm [8].
In the reminder of this paper we discuss
each step of our design flow in details.

Archive of SID

www.SID.ir

supply0 gnd;
supply1 vdd;
power_pmos #(8) tr_0(av_bar, tmpN_0, a0);
power_pmos #(8) tr_1(tmpN_0, vdd, a1);
power_nmos #(2) tr_2(av_bar, gnd, a0);
power_nmos #(2) tr_3(av_bar, gnd, a1);
.
.
.

C NOR2 X Y OUT ;
U1_NOR2 a0 a1 av ;
C NOR2 X Y OUT ;
U2_NOR2 b0 b1 bv ;
C CELEMENT2 X Y OUT ;
U3_CELEMENT2 av bv InputValid;
.
.
.

Transistor Netlist

Cluster Netlist

Transistor Chaining

Transistor Folding

Cluster Layout

Placement

InputAck

OutputAck

InputAck

OutputAck

z0 z0

State
Holder

ResetInputAck

OutputAck
z1z1

State
Holder

Reset

a0

b0

c0

d0

c1b1a1 d1

Figure2. Design flow

Archive of SID

www.SID.ir

4.1. Clustering and Pattern Matching

This step, as the entry point of our
design flow, focuses on reading the
netlist and transforming it into clusters
that are our building blocks from this
point on. A cluster is a set of connected
transistor chains that produces an
intermediate signal of the circuit. Since
non-hierarchical approaches are efficient
for a small netlist, Clustering and
hierarchical approaches are usual
techniques that are used in most of the
recent works [2, 4, 6, 9]. Using a
hierarchical approach and clustering,
transistor netlist is converted to a cluster
netlist. As an advantage of this method
when a cluster layout is once designed,
layout design of the same clusters in the
cluster netlist faced later on is avoided
for, it is already added to the library,
therefore an optimization in the
algorithm run time. Due to the fact that
there are considerable amount of similar
complementary clusters synthesized
from Caltech synthesis method such as
(NAND, NOR, C-Element for
completion detection circuits) the layout
synthesis method is simplified to two
stages:

1. Layout design of complementary
clusters once, as soon as they are
faced.

2. Layout design of non-
complementary clusters
whenever faced.

Clustering is done in three stages as
follow:

• Transistor Chaining: In order to
minimize the diffusion area of
series-parallel MOS circuits, we
have to find a Eulerian trail in the
diffusion graph. Given a cluster
netlist, a modified diffusion graph
G is first generated. This graph
incorporates the symmetry

constraints among transistors. Next
a trail cover on G, which satisfies
the symmetry constraints in the
circuit, is found. Two transistor
chains are shown in Figure3.

InputAck

OutputAck

InputAck

OutputAck

z0 z0

State
Holder

ResetInputAck

OutputAck
z1z1

State
Holder

Reset

a0

b0

c0

d0

c1b1a1 d1

 Figure3. Transistor chaining

The transistor chaining method used
here is a variation of the technique used
by Basaran [9].

• Transistor Folding: Given a
maximum size for PMOS and
NMOS transistors and transistor
netlist of each cluster, according to
method presented by Kim [10],
cells are synthesized using
different folding combinations with
different transistor sizes to
determine the minimum width
cluster that meets the specified
height. As a simple example, in
Figure4 the PMOS transistor of
height 12 is folded to two
transistors of height 6, and
therefore height minimization an
area optimization about 1002λ .

(a)

(b)

Figure4. Transistor Folding, (a) before
folding, (b) after folding

Archive of SID

www.SID.ir

• Layout design of the cluster
according to the diffusion-merged
folded transistors.

Area saving in diffusion-merge may
seem negligible when a few transistors
are considered. For example as indicated
in Figure5 the optimized area between
two minimum size merged MOS
transistors is about 4002λ (16 2mµ in
0.35µ technology)

Figure5. Diffusion merging

However, when the transistor count

reaches thousands of transistors, it will
be a considerable area. In our design
flow, in order to take advantage of this
optimization, we are to identify
transistor chains of shared source/drain
diffusions. Then considering the size of
each transistor, chains and cluster
layouts are designed. According to the
port positions, there may be a variety of
layouts for a cluster that are all added to
the library and used in the placement for
intra-cluster optimization. In another
word the positions of the ports are
specified dynamically in the placement
for intra-cluster optimization.

4.2. Global Placement

Using the cluster netlist and layout
library from the pervious stage and
based on a simulated annealing
placement algorithm, we have generated
a placement of the circuit considering a
cost function containing maximum wire
length, total area and isochronic fork
constraint as cost parameters. Simulated
annealing is probably the most well
developed method available for module

placement today. Although it is very
time consuming but yields excellent
results. This algorithm starts with a
random placement and in each step using
a perturb function either displace, mirror
a module or interchange two modules
with each other and according to the cost
function accepts all moves that result in
a reduction in cost. Moves that result in
a cost increase are accepted with a
probability that decreases with the
increase in cost. A parameter T, called
the temperature, is used to control the
acceptance probability of the moves that
result in cost increase. Higher values of
T cause more such moves to be
accepted. Such as most implementations
of this algorithm our acceptance
probability function is given by

C/T)exp(-∆ where C∆ is the cost
increase. In the beginning, we set the
temperature to a very high value so most
of the moves are accepted. Then the
temperature is gradually decreased so
the cost increasing moves have less
chance of being accepted. Ultimately the
temperature reduces to a very low value
so that only moves causing a cost
reduction are accepted, and the
algorithm converges to a low cost
configuration.

Our cost function is a function of
maximum wire-length, total area,
overlap and row length control penalty,
and the isochronic fork constrain.

5- Results

To compare the quality of the layouts
generated by our design tool (PERSIA),
we chose 5 manually handcrafted PCHB
layouts as our benchmarks. These
designs include a PCHB-AND2/AND4
(2/4-bit ANDs), PCHB-NOR2/NOR4
(2/4-bit NORs), and PCHB-BUF4 (4-bit
buffer). All of these benchmarks have

Archive of SID

www.SID.ir

been designed using PCHB-based design
methodology [11, 12]. The first version
of our design tool has been applied to

these benchmarks. The Results are
summarized in table1.

Table 1. Experimental Results

Cell Transistors Nets Clusters Manual Layout
Area)(2λ

PERSIA Layout
Area)(2λ

Improve

PCHB-NAND2 38 12 7 20336 21420 -5%
PCHB-NOR2 38 12 7 19795 20916 -5.6%
PCHB-NAND4 58 24 9 32965 33535 -1.7%
PCHB-NOR4 58 24 9 31278 31902 -2%
PCHB-BUF4 128 49 14 49144 50204 -2.1

Handcrafted layouts are hand-optimized
and therefore 1.7% to 5.6% denser than
automatic layouts designed with our design
tool, but as it is shown when the number of
transistors increases the automatic layout is
comparable to the hand-optimized one.

6- Conclusion

In this paper we have presented a fully
automatic transistor-level placement tool
for QDI circuits. Layout synthesis style is
based on a hierarchical 2-D row-based
method. It is flexible to handle many
process technologies, along with the
capabilities of (a) satisfying isochronic fork
constraints, (b) dynamic diffusion merging
for cell width minimization and (c)
dynamic transistor folding for cell height
minimization. Although this design tool is
designed for non-complementary QDI
asynchronous circuits in which the
isochronic fork constraint must be satisfied,
it efficiently handles any netlist of
transistors of any width and length,
ignoring the isochronic fork constraint if
not required.

References

[1] A. J. Martin, “Synthesis of Asynchronous
VLSI Circuits”, CS-TR-93-28, 1991.

[2] P. Gopalakrishnan, R. A. Rutenbar, “Direct
Transistor-Level Layout for Digital
Blocks,” ICCAD 2001.

[3] T. Serdar , C. Sechen, "AKORD:
Transistor Level and Mixed
Transistor/Gate Level Placement Tool for
Digital Data Paths", International
Conference on CAD, Nov. 1999, pp. 91-97.

[4] A. Gupta and J. P. Hayes, “A Hierarchical
Technique for Minimum-Width Layout of
Two-Dimensional CMOS Cells” Proc.
Int’l Conf. on VLSI Design, pp. 15-20, Jan.
1997.

[5] M. Guruswamy, Robert L. Maziasz, Daniel
Dulitz, Srilata Raman, Venkat Chiluvuri,
Andrea Fernandez, and Larry G. Jones,
“CELLERITY: A Fully Automatic Layout
Synthesis System for Standard Cell
Libraries”, Proceedings of 34th Design
automation conference, 1997.

[6] A. Gupta and J. P. Hayes, “CLIP: An
Optimizing Layout Generator for Two-
Dimensional CMOS Cells”, Proceedings
of 34th Design automation conference,
1997.

Archive of SID

www.SID.ir

[7] J. M. Cohn, D. J. Garrod, R. A. Rutenbar,
L. R. Carley, “KOAN/ANAGRAMII: New
Tools for Device-Level Analog Placement
and Routing”, IEEE Journal of Solid-State
Circuits, vol.26, no.3, March 1991, pp.
330-342.

[8] N. sherwani, “Algorithms for VLSI
physical design Automation,” 3rd edition,
Kluwer Academic Publishers, 1999.

[9] B. Basaran and R. A. Rutenbar, “An O(n)
Algorithm for Transistor Stacking with
Performance constraints”, Proceedings of
33th Design automation conference, 1996.

[10] J. Kim, S. M. Kang, “An Efficient
Transistor Folding Algorithm for Row-
Based CMOS Layout Design”,
Proceedings of 34th Design automation
conference, 1997.

[11] A. Lines. Pipelined Asynchronous
Circuits. M.Sc. Thesis, California Institute
of Technology, June 1995, revised 1998

[12] K. Saleh, “Asynchronous Design
Using Pre-Synthesized Templates”,
Technical Report, Amirkabir University of
Technology, September 2003.

Archive of SID

www.SID.ir

