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Abstract 
 
  
Genetic Algorithms (GAs) emulate the natural evolution process and maintain a population of 
potential solutions to a given problem. Through the population, GA implicitly maintains 
statistics about the search space. This implicit statistics can be used explicitly to enhance GA's 
performance. Inspired by this idea, a pattern-based adaptive uniform crossover (PAUX) has 
been proposed. PAUX uses the statistical information of the alleles in each locus to adaptively 
calculate the swapping probability of that locus for crossover operation. In this paper PAUX is 
introduced and examined in some benchmark tests. Experimental results show that using 
PAUX improves the performance of traditional GAs. 
 
Keywords: Genetic Algorithms, Stochastic Genetic Algorithms, Crossover Operators, 
Adaptive Genetic Algorithms 
 
1. Introduction 
 
 
Genetic Algorithms (GAs) emulate the natural evolution process and maintain a population of 
potential solutions to a given problem, which are evaluated by a problem-specific fitness 
function. This population is evolved by randomly selecting relatively fit members and 
performing genetic operations, especially recombination and mutation, on them to generate a 
new population [1]. With the progress of the GA, the average fitness of the population 
increases, hopefully leading to the optimal solution(s) to the problem. Through the population 
GAs implicitly maintain statistics about the search space. That is, useful materials or building 
blocks permeate in the population. GAs uses the selection, crossover and mutation operators to 
explicitly extract the implicit statistics from the population to reach the next set of points in the 
search space. In fact, this implicit statistics in the population can be used explicitly to enhance 
GA’s performance. Inspired by this idea, a pattern-based adaptive uniform crossover, called 
PAUX, is introduced in this paper. Pattern is a bit string derived from population using 
observer schema fitness which guides GA entire overall progress to produce new offspring 
using two parents with respect to population genotype structure. 
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2. Related Work on Crossover Operators  
 
 
Traditionally, GAs have used one-point or two-point crossover [2, 3]. Researchers have also 
carried out experiments with multi-point crossover: n-point crossover [4] and uniform 
crossover [5]. With the n-point crossover, n cut points are randomly chosen within the strings 
and the n+1 segment between the n cut points of the two parents are exchanged. Uniform 
crossover is the generalization of n-point crossover. It creates offspring by swapping each bit 
of two parents with probability ps of 0.5. [6] Proposes the parameterized uniform crossover 
where the decision of whether to swap for each locus is made by a biased coin flipping, i.e., 
the swapping probability Pu could be other than 0.5. Traditional crossover operators are 
inherently all based on uniformly randomization mechanism, i.e., generating cut points (n-
point crossover) or swapping points (uniform crossover) uniformly randomly across the 
chromosome. This situation is not very true with natural evolution because it is intrinsically 
dynamic and adaptive. Recently, researchers have applied adaptation techniques to crossover 
to enhance GAs capabilities [7]. According to [8], adaptation in crossover happens in three 
levels from top to bottom. In the top level, crossover operators are themselves adapted during 
a run of the GA. In the medium level, the rate or probability of crossover is altered during a 
run of the GA. In the bottom level, the position of crossing or swapping probability in each 
locus is adapted during a run of the GA. 
 
3. Pattern-Based Uniform Crossover operator (PAUX) 
 
 
According to above information and with respect to this fact that adaptive crossover operators 
can help GA to achieve better performance, PAUX is designed as an adaptive crossover 
operator which is based on statistical pattern of entire population. PAUX is created using both 
selection mechanism and crossover methods. It means that in the case of crossover action, 
both fitness and crossover patterns are considered to produce offspring. PAUX is based on 
uniform crossover operator. The Uniform Crossover) uses a Pu as probability of bit swapping 
between two parents to produce offspring [5]. The first modification to this operator occurs in 
computing Pu. In PAUX Pu is a variable probability and is computed with respect to parents’ 
fitness. Formula 1 is used by PAUX to compute Pu.  
 

Pu = f1/ (f1+f2)     (1)  
 

where f1 is fitness of first parent and f2 is second ones'. This value is used as the probability of 
exchanging bits between parents. This mechanism allows parents with higher fitness to 
contribute more of their genetic makeup to their offspring. Besides, PAUX uses a new concept 
called Template. Template is used to reflect population statistical information in behavior of 
crossover operator. In PAUX, template is a chromosome constructed using the entire 
population with respect to fitness and genetic distribution of population in the following 
manner: in each position, the entire population is traced and average fitness between all 
chromosomes with the same gene at that position is calculated, then the gene with highest 
average fitness, as winner gene, is inserted at the same position in template. For example 
consider Fig. 1: 
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Fig. 1: Sample template finding in PAUX 
  
After finding Template, real crossover action begins. In PAUX, both parents and template are 
involved in crossover mechanism and offspring are generated by their interaction. PAUX 
crosses two chromosomes using following method: after selecting two parents for crossover 
and finding suitable crossover probability using formula 1, both genes at first position in both 
parents are compared with each other. If they are not the same, a constant value called Padd is 
added to probability of selecting parent which its first gene agrees with first gene in template. 
if both genes in parents agree with each other and are not equal to first gene in template, then 
with probability of Pth first gene of offspring comes from template, and if both genes in first 
position of parents are the same and agree with first gene of template then first gene of 
offspring will be first gene of template without any consideration. For example see Fig. 2: 
 
 

 
 

Fig. 2: Sample crossover probability calculation in PAUX 
 

Using this method, statistical information of population is also involved to produce new 
generations. This involvement can help to improve GA performance in many occasions. Also, 
with respect to this fact that bit selection is biased using Avg. fitness of chromosomes with the 
same gene, premature convergence can be avoided or recognized rapidly. This is due to this 
fact that only one chromosome with different gene structure and higher fitness than the local 
minima can produce many offspring similar to it and can also change template in such a way 
that to produce more same offspring. In the following sections PAUX is comprised with other 
crossover operators for some benchmark problems.  
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4. Test Problems 
 
 
In this experiment, we use two test functions: One-Max and Modified Royal Road functions. 
First, we explain these problems: 
 
4.1. One-Max Problem 
 
 
This problem is one of the well-known GA problems, for a binary string x of length l, this is 
the problem to maximizing  

 
 
        (2) 

 
One-Max is a classical test to confirm that one is able to artificially evolve to a solution 
starting from a given initial population. The One-Max problem has been extensively studied 
[9, 10, 11], but with assumptions about selection that do not seem to hold in our situation. 
 
4.2. Royal Road Problem; RR (JH) Version 
 
 
The `Royal Road' function(s). In this problem each chromosome is regarded as being 
composed o regularly-spaced non-overlapping blocks of bits, separated by a number of 
irrelevant bits. Various parameters control the scoring: b, g, and m* are integers and u*, u and 
v are real numbers. The low-level blocks are of size b bits, with g irrelevant bits making up a 
gap between each. Each low-level block scores 0 if completely filled or mv if it contains m bits 
and m ≤ m*, or –mv if there are more than m* bits set but the whole block is not filled. Thus 
the low-level blocks are mildly deceptive. In addition there is a hierarchy of completed blocks 
which earn bonus points. The hierarchy has a number of levels; level 1 is the lowest, and level 
(j + 1) has half the number of blocks that level j has - the first and second blocks in level j 
form the first block of level j + 1, the third and fourth from level j form the second and level j 
+1 and so on. If level j has nj > 0 'filled' blocks then it earns a bonus score of u* + (nj - 1) u; 
thus u* is a special bonus for getting at least one filled at that level. The topmost layer of the 
hierarchy has one block, which is filled if and only if every block in the lowest level is filled. 
[12, 13] report that such `royal road' functions are very hard for some GAs and analyze why. 
See also the challenge issued by John Holland in the GA list, vol. 7 no. 22.  This challenge is 
used in our experiment; the pseudo code is given in table 1: 

 
Table 1: pseudo code for RR(JH), GAList vol. 7 no. 22 

 
Royal Road (JH): 
j indexes levels in hierarchy (1 is lowest level). 
i indexes target schemata (1 is at left). 
There are 2**k target schemata at level 1, and 2**(k-j) target  
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Table 1 (cont.): pseudo code for RR(JH), GAList vol. 7 no. 22 
 
schemata at level j+1 (compounded of adjacent pairs of schemata 
from the next lower level); each target schema is defined over b loci. 
BONUS(j) = u*+(n(j)-1)u, n(j)>0 
 = 0, n(j) = 0 
where n(j) is the number of found targets at level j and u* and u are  
parameters, u*>u. 
PART(i)=contribution to overall score from m(i) correct alleles in  
target 
 schema i at the lowest level, 0<i<1+2**k, 
 = m(i)v, if m(i)<m*+1, 
 = -(m(i)-m*)v if m*<m(i)<b, 
 = 0 otherwise. 
(PART introduces simple nonlinearities: The score actually 
decreases if there are more than m* correct bits in the target area). 
SCORE = Sumj[BONUS(j)]+Sumi[PART(i)]. 

 
 
5. Experimental Results 
 
 
In the above problems, a simple GA using PAUX as crossover operator is compared with 
simple GAs using one-point, two-point and uniform crossover operators. Fig.3 shows PAUX 
versus other operators in one-max problem. Results show that pattern-based method is faster 
than the other operators to evolve population to reach global optimum and also achieves better 
average fitness.  

 
Fig. 3: PAUX versus other crossover operators in one-max problem (horizontal axis is 

generation and vertical axis is average fitness of population) 
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This test is done over 100 independent runs with population of size 100 and chromosome 
length of 100. Fig. 4 shows PAUX versus other operators in RR problem. As expected, results 
of PAUX are significantly better than other operators. It reaches best performance and 
achieves best average fitness in every generation. These results are averaged over 100 
independent runs with chromosome length of 246 with the following parameters: b=8, g=7, 
m*=4 and u*=1.0. 

 
4: PAUX versus other crossover operators in RR problem (horizontal axis is generation and 

vertical axis is average fitness of population) 
 

6. Future Works 
 
 
It seems that pattern-based methods can improve AGAL performance. Further theoretical 
analysis is required to investigate the reason behind the astonishing performance of PAUX and 
its general applicability. 
 
7. Conclusion 
 
 
In this paper, we propose a new crossover operator, the PAUX that can be used as a crossover 
operator instead of traditional ones to produce new generations in traditional or modified GAs. 
This operator increases GA potential in constructing new building blocks while preserving the 
old ones. The experimental results show that PAUX performs much better than other 
commonly used crossover operators on the test problems. Our experiment results indicate that 
PAUX is a very good candidate crossover operator for GAs. 
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