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Abstract

This paper presents a new fault-tolerant routing algorithm in hypercube multicomputers based on
the local-information of each node. In this algorithm, each node is only aware of its neighbors’ status
and makes routing decision using this information and the destination address of a message. This
bounded local-information, whose values are numerable, causes the algorithm to be more adaptive with
respect to the similar works, e.g. probability vector. Due to the low overhead of communications
needed for constructing the local-information, dynamic faults are highly tolerable as well as static
faults. Simulation results reveal that, in the case of static faults, the latency of messages is reduced up
to 20 percent and in the presence of dynamic faults, the throughput of message delivery with wormhole
switching is considerably improved.

Keywords: Hypercube, Fault-tolerance, Routing algorithm, Static/Dynamic fault.

1 Introduction

The success of large-scale multicomputers is highly dependent on the efficiency of their underlying
interconnection networks. The performance of a given multicomputer network greatly depends on its
routing algorithms which specify the path between two nodes involved in an end-to-end of
communication. The hypercube has been one of the most popular networks for multicomputers due to
its desirable and powerful topological properties, including regular structure, low diameter, and ability
to exploit communication locality. The iPSC [1], N-CUBE [2], and SGI2000 [3] are examples of
practical systems that are based on the hypercube.

Routing in fault-free hypercube has been studied in the literature [4], [5], [6], [7]. Some of the most
important issues in the design of a routing algorithm are high throughput, low latency message
delivery, avoidance of deadlock, livelocks and starvations and ability to work under various traffic
patterns [8].

As the number of processors in a network increases, the probability of processor failure also
increases. The failures can be either static or dynamic. Static failures are present in the network when
the system is powered on and dynamic failures occur at random during operation. Dynamic faults can
interrupt a message in progress and are more difficult to handle since pipelined switching techniques,
e.g. wormhole switching, are particularly susceptible to faults due to the existence of dependencies
across multiple routers. Consequently, system reliability becomes a key issue in the design of large



scale multicomputer. Fault tolerance is ability of a network to function in the presence of component
failure. For networks with faults, a routing algorithm should exhibit a few additional features: graceful
performance degradation, and ability to handle faults with only a small increase in routing complexity
and local knowledge of faults —each nonfaulty processor knows only the status of its neighbors [8].

If each node is equipped with the information on all faulty components, then it can always
determine a fault-free path for every message to its destination. However, this is usually too costly (in
space and time), especially when the network is large. Hence, it is important to develop routing
schemes which require each node to keep only the failure information essential for making correct
routing decision.

For the above reasons, we develop a routing scheme which requires each node to know only the
condition of its own links and neighbor nodes. This paper describes a fault-tolerant routing for
hypercubes with dynamic and static faults which routes messages as well as the probability vector
algorithm [9] with reduced complexity. The main feature of the routing is its ability to capture network
performance when location and number of failure nodes change dynamically. Simulation results reveal
that the latency of a typical message is reduced especially when number of faults increases. Compared
to the similar fault-tolerant routing, proposed algorithm exhibits a considerable throughput. The
algorithm makes decision adaptively based on local failure information only and is simple to
implement and needs a very small message overhead. A performance comparison against the
probability-vector algorithm through extensive simulation experiments is conducted. The results reveal
that the new routing algorithm outperforms the probability vector algorithm in terms of routing
distance, calculation time, and throughput.

2 Related work

Lee and Hayes [10] have used the concept of unsafe nodes to design a fault-tolerant strategy.
Message routing is achieved by avoiding unsafe nodes, which could possibly lead to communication
difficulties and excessive delays. Chiu and Wu [11] used the concept of unsafe nodes with some
extensions and showed that a feasible path of length not more than the Hamming distance plus four can
be guaranteed provided that the number of faulty nodes does not exceed n-1. The concept of unsafe
nodes has also been used in [12] for broadcasting in faulty hypercubes.

Su and Shin [13] present an adaptive fault-tolerant routing for meshes and hypercubes using two
virtual channels per physical channel. In their algorithm, the network is decomposed into two virtual
networks to support reliable and fully-adaptive routing. Their method can tolerate faulty cubes which
has no more than »/2 faulty nodes.

Gordon and Stout [14] have proposed a fault-tolerant routing based on sidetracking, where a
message is de-routed to a randomly chosen fault-free neighboring node when there is no fault-free
neighbor along any of existing optimal paths leading to the destination. With this approach a routing
failure may occur. Furthermore, excessive delay may arise even in the presence of few faulty
components [11].

Chen and Shin [15] have proposed a routing strategy based on depth-first search in which
backtracking is required if all the required forward links cannot be used due to faulty components. The
traversed path is recorded and attached to the message. A simplified version of this approach that
tolerates fewer faults was presented in [16], where routing is progressive without backtracking, and a
message is routed to its destination on an optimal path with high probability. Lan [17] has presented a
fault-tolerant routing algorithm based on local information which guarantees an optimal and near-
optimal routing. However, the algorithm is based on a restricted model of fault distribution as it can
tolerate only #-1 faulty nodes (and/or links) in an n-cube.

Wu [18] has presented the concept of safety levels, based on the limited global information, as an
enhancement of the unsafe node concept. The safety level is an approximate measure of the number as
well as the distribution of faulty nodes. Optimal routing is guaranteed if the safety level of the node is
no less than the Hamming distance between the source and destination. Chiu and Chen [19] have



proposed the concept of routing capability, which further enhances the safety level concept. Using the
routing capability concept, n binary bits are attached to ever node. A node is called k-capable if the k-th
bit is 0, in which case optimal routing to nodes at Hamming distance up to k is guaranteed.

The Safety vectors algorithm proposed in [20] is similar concept to the routing capability, with
some extensions related to dynamic adaptivity analysis and application to the generalized hypercube.
The safety vector approach requires each processor to maintain a bit vector (called safety vector)
computed through a number of fault information exchanged between adjacent processors. The
algorithm guarantees optimal routing to all destination that are at a Hamming distance £ from a given
node A, if and only if, the A-th bit of safety vector at node A is set. The major drawback of this
algorithm is related to its conservation approach. Indeed, when the &-th bit of the safety vector of node
A is not set, node A is not considered for forwarding messages to any destination at distance £ from A.
Even when all destinations at distance k are reachable from node A via fault-free optimal paths except
for one such destination, node A is excluded as a forwarding node for all these destinations. This
causes high percentages of suboptimal routing and routing failure.

A limited-global-information-based algorithm was proposed in [21] for the hypercube, which is
based on a calculated probability vector of every node. The probability vector approach requires each
processor to maintain a vector of length n of floating-point numbers computed through n-1 information
exchange of fault information between adjacent processors. The algorithm routes messages by the
expected length of routing path via each of its neighbors. However, the specified routing algorithm
uses spare dimensions with some restrictions which are not necessary. Moreover, the calculation of the
probability vector is approximated leading to considerable errors in some cases.

The rest of this paper is organized as follows. Section 3 gives the notation and preliminaries used
in the next sections. Section 4 presents the proposed fault-tolerant algorithm and then derives some of
its properties. Section 5 presents a comparative evaluation between the new algorithm and the
probability vectors algorithm through simulation experiments. Section 6 concludes the paper.

3 Notation and Preliminaries

The n-dimensional hypercube (or binary n-cube) is an undirected graph with 2" vertices (nodes or
processors) labeled by 2" binary strings of length n#. Two nodes are joined by an edge if, and only if,
their labels differ in exactly one bit position. The label of node A is written as a, a,; ... a;, where a; €
{0, 1} is the i-th bit (or bit at i-th dimension). The neighbor of a node along the i-th dimension is
denoted by A?. The hamming distance between nodes A and B, denoted as H(A, B), is the number of
bits at which their labels differ. In other words, H(A, B) = |A @ B| where © denotes the exclusive-or
binary operation. |X| gives the number of 1’s in the binary pattern of X. A path between two nodes A
and B is minimal path if its length is equal to H(A, B).

If the distance between node A and node B is d then A@® B has value a bit value 1 at d positions
corresponding to d distinct dimensions. These d dimensions are called preferred dimension, while the
remaining #-d dimensions are called spare dimensions. If a shortest path is not optimal, it contains one
or more spare dimensions in addition to the preferred dimensions. A faulty dimension refers to either a
faulty neighboring node or a faulty link at that dimension.

4 The proposed fault-tolerant routing algorithm

The routing process makes decisions based on the probability of the all preferred and spared
neighbors. Routing through a spare neighbor increases the routing distance by two over the minimal
distance. A minimal path can be obtained by routing through all preferred dimensions in some order.
We make the following assumption in this paper: 1) a faulty n-cube contains faulty nodes and/or links,
2) there are some algorithms for fault detection and diagnosis that are responsible for activation of the
probability recalculation and 3) each of two nodes at the end sides of a faulty link considers the node at



the other end as faulty. We furthermore, assume that each node knows the probability of all its
neighbors and can distinguish an adjacent link from an adjacent faulty node when probability needs to
be calculated.

The proposed fault-tolerant algorithm is an alternative approach to the probability vector method
[21]. In [21] a probability vector was used for routing messages in the networks. However, the
specified routing algorithm uses spare dimensions with some restrictions which are not necessary.
Moreover, the calculation of the probability vector is approximated leading to considerable errors in
some cases. The basic steps of this algorithm are:

1) each node determines number of its faulty neighbors and then calculates probability of a
neighborhood to be faulty,

2) each node exchanges its probability to each dimension one time and

3) performs efficient fault-tolerant routing.

4.1 Calculation of the probability

In the proposed approach, local-fault information is captured in a real number Pc which is between
0 and 1, that is associated with each node C in an n-cube. Specifically, Pc represents the routing
capability of node C to route a message received from one of incident edges. This probability is
calculated by the following algorithm.

Algorithm LOCAL STATUS (C: node)
/* Determine the probability of faulty neighbors for node C */

begin
Pc= 0,
fori=1tondo
if C" is faulty then
PC = PC + 1/}’1,
next i
end

Each node uses the probability of each of its neighbors and calculates the effective probability
according to the following equation. This is due to the fact that current node has additional information
about itself and thus can accurate its knowledge from the faulty neighbors.

s

PC(,, = Prob. {a neighbor of C? be faulty | node C is not faulty}
o P, .nl(n-1), if C" isnot faulty 0
c 1, if CVis faulty

4.2 The fault-tolerant routing

In this algorithm, routing decisions are made via the status of the local-information stored in each
neighbor of a node. In other word, each node that contains a message for routing, sends it to one of its
spare dimensions which has most non-faulty neighbors. Hence, routing in the next hop of the message
during the routing path has been guaranteed because it has at least one non-faulty neighbor. Therefore,
routing in this scheme is greedy due to the fact that each node routes a message based on the
information stored in its neighbors and is not aware of the faulty components in the network.
Information of each node is about of all nodes within the two-hop distances. This scheme attempts to
be far away, at least 2 hops, from the faults in the network and sends messages to a node which has an
escape channel that prevents to failure.



Algorithm Neighbor Based Routing (M: message; C, D: node)

begin
N=C @ D;
H=|C @D
if H=0 then

/* The current node is destination */
Deliver Message (M);
if M.Routing_Distance <H + 2 * no_of faults then
/* routing distance of message is less than maximum threshold*/

*

if 3i(N@H) =1/ P, <IN(V kINK) =1. P, <P.,))

/* i is a preferred neighbor with least probability and at least has two non-faulty neighbors */
then OPTIMAL ROUTING
Send (M, C(i), D);
M.Routing Distance = M.Routing_Distance+1;
elseif 3 (N()=0A P, <IN (Y k|NK)=0. P, <P.,))
/* j is a spare neighbor with least probability and at least has two non-faulty neighbors */
then SUBOPTIMAL ROUTING
Send (M, C(j), D);
M.Routing Distance = M.Routing Distance+1;
else
Failure Message(M);
else
Loop Message(M);
end

Based on this routing algorithm, suboptimal routing increases the routing distance by 2 over the
Hamming distance of source and destination nodes. Therefore, in the worse case, if the routing is
feasible the length of resulted path is at most k+2f hops between two nodes with a Hamming distance
of k where f'is number of faulty nodes in the n-cube. This is because of the condition used for detecting
loops in the above algorithm. To find maximum adaptivity, we need a simple but effective way of
gathering information about faulty nodes in the neighborhoods. The probability used in this paper has
more adaptivity than the method proposed in [21].

THEOREM 1. In the routing of a message m from source node to destination node that is d hope
away, let U ; be the node that message m has been reached to it after traversing i hops. If for every i

the condition P;, <(d i)/(n-1) is true, then the algorithm routes the message using an optimal path.
d
Proof: If P;,- <(d i)/(n-1) then using Eq. 1, it can be implied that PU,» <(d i)/n. This means that node
d d

U; has at most (d-i)-1 faulty neighbors. Since the node U; is i hops away from the source node
(which is d hops away from the destination node), if i hops were traversed in preferred dimensions,

then in node U ; the message should be sent via one of the remaining d-i dimensions and, therefore, at

least one preferred neighbor exists such that, according to the neighbor-based algorithm node, U ; can

send the message to it.



5 Performance comparison

We have analyzed experimentally the performance of the proposed neighbor-based fault tolerant
approach using simulation experiments. A simulation study has been conducted for both the proposed
neighbor-based routing and the probability vector algorithm [21]. The network cycle time is defined as
the transmission time of a single flit across a physical channel. Messages are generated at each node
with rate of one message to all nodes per cycles. Message length is fixed at M flits. The mean latency is
defined as the mean amount of time from the generation of a message until the last data flit is absorbed
at the destination node. For the sake of specific illustration, we provide results for the following cases:
e Network size N = 2'" nodes
e Message length M = 64 flits
e Number of faulty nodes was started from 0% and increase up to 75% of network size

We assume that each number traverses a link in one channel cycle time. A total of 100,000 source-
destination pairs were selected randomly during each run. The following variables are used to define
some performance measures.

e Unreachibility: a routing for non-faulty source and destination nodes that the algorithm could not
route a message between them.

e Looping: routing of a message which crosses a number of links beyond the maximum threshold
before being discarded.

e Deviation time: Time difference between message latency using the proposed algorithm and the
message latency using optimal routing.

The percentage of unreachability measures the percentage of message that the algorithm fails to
deliver to destination due to faulty component. The percentage of looping indicates the ratio of
messages that fail to reach destinations due to network looping. Figures 1, 2, 3 and 4 show the results
of comparison between the probability vector and neighbor-based algorithms. Figure 1 shows the
percent of unreachability with respect to the number of faulty component. It reveals that the failure rate
of delivery in neighbor-based algorithm is equal to the probability vector approach. Figure 2 shows that
neighbor-based routing is very similar to the probability vector when number of faults is less than 400.
When number of faults further increases, there are some differences in the looping messages. However
in Figure 3, it has been showed that the one proposed algorithm outperforms the probability vector
scheme in the average time for delivering messages when the network has large number of faulty
nodes. It reduces the average time up to 20 percent in the presence of faulty components, compared to
the probability vector routing.

The calculation time of probability vector and the probability used in this scheme for various faulty
nodes has been compared and shown in Figure 4. In this Figure, the parameter Pf denotes the percent
of faulty nodes in the network. As shown in this figure, the time of calculating probability vector
increases exponentially with respect to network dimensions (i.e., the order of calculation is O(2"))
while the time needed for calculating the probability used in our scheme has taken only few cycles
(i.e., the order of calculation is O(1)).

In the case of dynamic faults, since the number and location of faults move dynamically during the
run time, it is necessary the information required for fault tolerant routings was updated. Figure 5
shows the average throughput of the network in term of the time between probability recalculations
(i.e., time to update information) when the percent of faulty nodes is 85%. Throughput is the maximum
amount of message delivered per time unit in nodes (cycle) [22]. As shown in the Figure 5, the
proposed algorithm outperforms the probability vector algorithm, particularly when the time between
probability recalculations needs to be not large due to tolerate more dynamic faults. It is due to the
facts that 1) probability vector algorithm calculates probability vectors in a time higher than the
neighbor-based and therefore causes to communicate less messages, and 2) neighbor-based algorithm
routs message more optimal than probability vector as shown in the Figure 3 that causes messages to
be received early in destination.
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Although probability vector eventually approaches to the throughput of the neighbor-based, but it
is suitable for tolerating static faults rather dynamic faults. Hence in order to tolerate dynamic faults,
simulation results reveals that the neighbor-based algorithms is more efficient than the probability
vector and throughput of message delivery with wormhole switching is considerably improved.

6 Conclusion

This paper proposed a new fault tolerant routing which routes messages based on the local-
information of faulty nodes. Due to the low communication overhead needed for updating the local
fault-information of nodes, this scheme tolerates dynamic faults very efficiently. According to the
similar works such as probability vector [21], this scheme has message latency lower than the previous
published works. Simulation results revealed that, in the case of static faults, the latency of messages
was reduced up to 20 percent and in the presence of dynamic faults, the throughput of message
delivery with wormhole switching was considerably improved.
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