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Abstract: Branch prediction is important in 
high-performance microprocessor design. 
Among branch prediction mechanisms, 
dynamic branch predictors are the best 
because they can deliver accurate branch 
prediction regardless of input changes or the 
program behavior. However in all existing 
dynamic branch predictors, the interference 
effects due to aliasing in the prediction tables 
are the most important causes of branch 
mispredictions. 

In this paper some popular hash functions 
used in different computer applications are 
proposed and their effects on dynamic 
branch predictors are analyzed. We 
investigate hash influence on branch 
prediction accuracy in both analytical and 
experimental ways. Our experimental results 
suggest that hash can be incrementally 
effective on branch prediction accuracy and 
this increase is dependent on branch 
behavior. 

Keywords- Branch prediction, hash, 
uniformity, branch behavior. 

1. Introduction 

Branch prediction is important in high-
performance microprocessor design. There 
are two trends that are increasing the 
importance of branch prediction further: 
Processors are getting wider and pipelines are 
getting deeper. These trends make branch 
prediction critical, because they increase the 
relative cost of branch mispredictions [1]. It is 
argued that by the year 2010 branch 
prediction will become the most limiting 

factor in processor performance, surpassing 
even the limitation of memory system [2]. 

Among different branch prediction 
mechanisms, dynamic branch predictors are 
more popular because they can deliver 
accurate branch prediction without changes to 
the instruction set or pre-existing binaries [3]. 
But the main problem that reduces the 
prediction rate in all existing dynamic 
prediction schemes (Gshare [4], The Agree 
Predictor [5], The Bi-Mode Predictor [3], The 
Skew Branch Predictor [6], The Filter 
Mechanism [7], and The YAGS Branch 
Predictor [8]) is aliasing between two indices 
(an index is typically formed from history and 
address bits) that map to the same entry in the 
prediction table [8]. One way to reduce 
aliasing is to improve the indexing method. 
That is, in addition to using the branch 
address as its argument, it takes other 
arguments representing current program 
behavior along with randomization to reduce 
aliasing. In this paper we propose hash to be 
the solution.  

Hash normally consists of three parts: a 
hash table, key(s), and a hash function. A 
hash table is an effective data structure for 
implementing the dictionary operations of 
INSERT, SEARCH, and DELETE [9]. In this 
paper, we are interested in SEARCH1: given a 
branch address as our key, we search the hash 
table to predict its direction2. The point here 
is instead of using the key as an array index 

                                                
1 We can assume INSERT, as the operation updating a 
prediction-bit counter after a branch is resolved. 
2 In this paper, we are interested in predicting the direction of 
branches not their targets. 

Archive of SID

www.SID.ir



directly, the array index is computed from the 
key. This is what a hash function is supposed 
to do. Of course due to its critical path, search 
for a branch direction in the hash table should 
not exceed )1(o time.  

Due to hardware difficulties and delay 
concerns, practical implementation of almost 
all of dynamic branch predictors [3,4,5,6,7,8] 
applied the simple linear hashing of modulo-2  
addition (XOR function) using branch 
address as their primary input (hash-key) and 
global/local history as their secondary one. It 
should be added that Neural Branch 
Prediction [10], a recent concept in branch 
prediction, also exploits hashing techniques. 
It uses the adaptive and flexible behavior of 
neural networks to predict branch directions 
[11]. In this technique, table of perceptrons 
(or neurons) is indexed by address hash. 
These perceptrons contain array of weights 
corresponding to history bits [10]. By using a 
hash method based on multiplying history bits 
by their respective weights, direction of a 
given branch is determined. This new 
technique needs more work to meet current 
hardware and timing requirements and we do 
not elaborate on it any more. 

In this paper, different models using a 
particular hash function are analyzed. Section 
2, compares a direct access table with a hash 
table. Section 3, introduces some common 
hash functions used in different computer 
applications now targeted at branch 
prediction. Section 4 does an analysis on 
access probability of each entry and 
categorizes them into 4 classes. Section 5 
describes our simulation methodology. 
Section 6 presents our experimental results. 
And section 7 concludes this study and 
proposes our future research directions. 

2. Direct-Access Table vs. Hash Table 

Direct addressing is a simple technique 
that works well when the universe U of keys 
is reasonably small [9], i.e. total number of 
branches executed is comparable with number 
of static branches in a program. This is our 
base model (figure1). Successive models 
presented next are compared with this model.  

When a branch is fetched, its key (i.e. its 
address) is drawn from the universe 

}{ 1,...,1,0 −= mU . To obtain the direction, 

we use an array or a direct-address table, 
denoted by [ ]1..0 −= mT  in which each 
position or slot (i.e. branch predicted 
direction) corresponds to a key in universe U. 
Now the search operation is defined as [9]: 

 

DIRECT_ADDRESS_SEARCH (T,k) 
 return T[k] 

 

Prediction Table

Branch Address

 

Figure1: A direct address indexing model. 

 

The difficulty with direct addressing is 
obvious: if the universe U is large, storing a 
table T of size |U| may be impractical, or 
even impossible. Furthermore, the set k of 
keys actually stored may be so small relative 
to U that most of the space allocated for T 
would be wasted [9]. That is, many elements 
would be mapped to the same slots. In other 
words, it is not possible to hold all relevant 
branch history for all active branches at the 
same time [6] and branch interference would 
be considerable if only branch addresses were 
used for indexing. (Here |U| is number of 
dynamic branches and |k| is number of static 
branches). 

With direct addressing, a branch direction 
with address k is found in entry k. While with 
hashing, its direction is found in entry h(k). 
That is, we use a hash function h to compute 
entry (slot) from the address (key) k. Figure 2 
shows how hashing is used in our approach. 
Here h maps the universe U of keys into the 
slots of a hash table [ ]1..0 −= mT : 

 

{ }1,...,1,0: −→ mUh  
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Prediction Table

Branch Address

Hash Function

Other
inputs

 

Figure2: How hashing can be used for branch 
prediction. 

Similar to direct address indexing, we still 
may have the problem of aliasing: two keys 
may be mapped to the same slot. This 
situation is also called a collision [9]. The 
ideal solution would be to avoid collisions 
altogether. We might try to achieve this goal 
by choosing a suitable hash function h. One 
idea is to make h appear to be random, thus 
avoiding collisions or at least minimizing 
their number. The very term “to hash” 
evoking images of random mixing and 
chopping captures the spirit of this approach 
[9]. Next section discusses hash functions that 
somehow consider randomization in their 
mappings. 

3. Hash Functions 

In this section some well-known hash 
functions are introduced, but before that, let’s 
know what makes a good hash function. A 
good hash function satisfies (approximately) 
the assumption of simple uniform hashing; 
each key is equally likely to hash to any of 
the m slots, independently of where any other 
key has hashed to [9]. Unfortunately it is 
typically not possible to check this condition, 
since one rarely knows the probability 
distribution according to which the keys are 
drawn and the keys may not be drawn 
independently. This problem is particularly 
obvious for branch prediction, since each 
branch is dependent upon previous executions 
of itself or other branches. We will talk about 
uniformity more in section 4. 

3.1 The division method 
In the division method for creating hash 

functions, we map a key into one of m slots 
by taking the remainder of k divided by m. 
Therefore, the hash function is [9]: 

mkkh mod)( =   

Where in our design, k is the branch 
address and m is the length of the prediction 
table. Should m be a power of two, then this 
model simply gets our base model defined in 
section 2 (e.g. if m = 2p then h(k) is just the p 
lowest-order bits of k). Unless it is known 
that all low-order p-bit patterns are equally 
likely, it is better to make the hash-function 
depend on all the bits of the key [9]. 

Ignoring hardware difficulties we would 
encounter while implementing this method, 
we choose a prime not too close to an exact 
power of two. It is often a good choice for m 
[9]. (It should be reminded that in this paper 
we are interested in realizing the effectiveness 
of hashing on branch prediction accuracy). 

3.2 The multiplication method 
The multiplication method for creating 

hash functions operates in two steps. First, we 
multiply the key k by a constant A in the 
range 0 < A < 1 and extract the fractional part 
of kA. Then we multiply this value by m and 
take the floor of the result. In short, the hash 
function is [9]: 

� �)1mod()( kAmkh =  

Where “kA   mod   1” means the fractional 
part of kA, that is, � �kAkA− . An advantage 

of the multiplication method is that the value 
of m is not critical. So we choose it to be a 
power of two (m = 2p for some integer p) to 
be hopeful that it would be easily 
implemental in hardware! 

Suppose that the word size of our 
architecture is w-bits (here w = 32) and that k 
fits into a single word. We restrict A to be a 

fraction of the form ws 2 , where s is an 
integer in the range 0< s <2w. Referring to 
figure 3, we first multiply k by the w-bit 

integer s = A⋅2w. The result is a 2w-bit value 
r12

w + r0, where r1 is the high order word of 
the product and r0 is the low-order word of 
the product. The desired p-bit hash value 
consists of the p most significant bits of r0 
(practically p << m) [9]. 

Although this method works with any 
value of the constant A, it has been shown 
that 
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...6180339887.02
)15( =−≈A  

is likely to work reasonably well [9].  

For our architecture, where 32=w , we 

have 2654435769=s  and 322
sA = . 

k

s = A . 2w

r0r1

h(k)

 

×

 
w bits

extract p bits

 

Figure3: The multiplication method of hashing. 

3.3 Open addressing 
In the three models introduced so far, for a 

particular branch during a program execution, 
a particular entry is always used. In other 
words, if this branch executes several times, 
its predicted direction is always determined 
by a specific entry. 

It is common notice that a branch behavior 
might alter during the program execution. 
Now if a particular entry is only used to 
predict this branch direction, number of 
mispredictions occurring could be 
considerable. Moreover, this entry may be 
used for other branches of different directions 
(that is, collision or aliasing). This is one of 
the drawbacks pointing to address-only 
branch prediction mechanisms.  

Now if we enter another element as an 
indicator of the present program behavior to 
our hash function, then we can defeat this 
shortcoming to great extent. This is the idea 
behind open addressing. Three techniques are 
commonly used in open addressing: linear 
probing, quadratic probing, and double 
hashing [9] that due to our application, only 
two of them are addressed here. 

3.3.1 Linear probing 
Given an ordinary hash function:  

{ }1,...,1,0: −→′ mUh   

as an auxiliary hash function, the method of 
linear probing uses the hash function [9]: 

mikhikh mod))((),( +′=  

Now if consider k as our branch address, 
h'(k) as the hash function of our base model 
(i.e. h'(k) = k), i as the global branch history 
register, and ‘+’ as the modulo–2 addition, 
then we have the famous g-share branch 
prediction scheme [4]. 

In our simulation (discussed in section 5), 
we take i as:  

1. Dynamic branch counter (It is 
indicative of current number of 
branches executed dynamically in a 
program). 

2. Branch global history register. 

3.3.2 Double Hashing 
Double hashing is one of the best methods 

available for open addressing. Because the 
patterns produced have many of the 
characteristics of randomly chosen patterns. 
Double hashing uses a hash function of the 
form: 

mkhikhikh mod))()((),( ′′⋅+′=  

where h′  and h ′′  are auxiliary hash 
functions.  

The value h"(k) must be relatively prime 
to the hash-table size m for the entire hash 
table to be searched. A convenient way to 
ensure this condition is to let m be a power of 
two and to design h" so that it always 
produces an odd number (e.g. we can OR the 
LSB bit by one). Another way is to let m be 
prime and to design h" so that it always 
returns a positive integer less than m. For 
example, we could choose m prime and let: 

mkkh mod)( =′ , 

)mod(1)( mkkh ′+=′′
, 

where m' is chosen to be slightly less than m 
(say, m – 1). 

4. Analysis 

In this section, we investigate our 
approach analytically before we do the 
simulation. 
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Given a hash table T with m slots (entries) 
that is accessed n times during a program 
execution where n >> m, we define the load 
factor � for T as mn , that is, the average 
number of accesses to each slot.  

The average performance of hashing 
depends on how well the hash function h 
distributes the set of keys to be stored among 
the m slots, on the average. Here we assume 
that any given element is equally likely to 
hash into any of the m slots, independently of 
where any other element has hashed to. We 
call this the assumption of simple uniform 
hashing [9].  

For 1,...,1,0 −= mj , let us denote the 

number of accesses to jslot  by jn , so that  

110 ... −+++= mnnnn , 

and the average value of jn  is 

m
nnE j == α][ . 

We also define jp  as jslot  access 

probability, that is, nnp jj =  and the 

average value of jp  is 

mn
m

n

n
nE

pEq j
j

1][
][ ====  

Now we use q  as our crucial item to 
classify the prediction table entries into 4 
categories ranging from Category0 to 
Category3: 

• Category0: Those entries that remain 
untouched (useless), during a 
program execution, belong to this 
category. 

• Category1: This category contains 
those entries whose access 
probability ranges from 0 to q. In 
fact, the more entries belong to this 
category, the more effective the 
indexing method is. 

• Category2: This category consists of 
those entries whose access 
probability ranges from q to qlog2

m. 
The reason why we have put the 
parameter log2

m in our classification 
is to consider the effect of the number 
of the prediction table entries (i.e. m) 

in our simulation. In other words, the 
region of each category is directly 
related to the number of the 
prediction table entries. 

• Category3: This category contains 
those entries whose access 
probability is more than qlog2

m. 

Now we define the hash functions used in 
our simulation: 

• ,)(: 00 kkhfunc =   

in which k is the branch address. This 
is our base model in which the branch 
address is directly used for indexing. 

• ,mod)(: 11 mkkhfunc =  
where k is the branch address and m 
is a prime standing for the prediction 
table size. This hash function is based 
on the division method. 

• � �,)1mod()(: 22 kAmkhfunc =
in which k is the branch address, m 
represents the prediction table size 
and it is a power of two (m = 2p for 
some integerp ), and A is a constant 

equal to 2)15( − . 

• ,mod))((),(: 33 mikhikhfunc +′=
where k is the branch address, h'(k) is 
equal to h0(k), m represents the 
prediction table size and it is a power 
of two (m = 2p for some integer p), i  
is the dynamic branch counter, and 
‘+’ is the modulo–10  addition. 

• ,mod))((),(: 44 mikhikhfunc +′=
where k is the branch address, h'(k) is 
equal to h0(k), m represents the 
prediction table size and it is a power 
of two (m = 2p for some integer p), i  
is the global history register, and ‘+’ 
is the modulo–10 addition. 

• 
,mod))()((),(

:

5

5

mkhikhikh

func

′′⋅+′=
where k is the branch address, h'(k) is 
equal to h1(k), h"(k) is equal to (h0(k) 
mod m – 1),  m is a prime indicating 
the prediction table size, i  is the 
dynamic branch counter, and ‘+’ is 
the modulo–10 addition. 

Archive of SID

www.SID.ir



• 
,mod))()((),(

:

6

6

mkhikhikh

func

′′⋅+′=
where k is the branch address, h'(k) is 
equal to h1(k), h"(k) is equal to (h0(k) 
mod m – 1),  m is a prime indicating 
the prediction table size, i  is the 
global history register, and ‘+’ is the 
modulo–10 addition. 

• 
,mod))()((),(

:

7

7

mkhikhikh

func

′′⋅+′=
where k is the branch address, h'(k) is 
equal to h2(k), h"(k) is equal to  
h0(k)|1 , m represents the prediction 
table size and it is a power of two  
(m = 2p for some integer p), i  is the 
dynamic branch counter, and ‘+’ is 
the modulo–10 addition. 

• 
,mod))()((),(

:

8

8

mkhikhikh

func

′′⋅+′=
where k is the branch address, h'(k)  is 
equal to h2(k), h"(k) is equal to  
h0(k)|1, m represents the prediction 
table size and it is a power of two  
(m = 2p for some integer p), i  is the 
global history register, and ‘+’ is the 
modulo–10 addition. 

5. Simulation Methodology 

Performance of each hash function 
proposed in section 4 was measured by 
instruction-driven simulations performed on 
the SPECint2000 benchmarks [12]. Five 
SPECint2000 benchmarks were used for our 
evaluation: crafty, gap, gcc, mcf, and twolf. 
(SPECfp2000 benchmarks are not considered 
in our simulation, since they present high 
prediction accuracy even in case of using 
poor branch prediction mechanisms). We 
used Simplescalar’s bpred simulator 
(modified to fulfill our requirements) [13] as 
our simulation tool. The execution statistics 
of these benchmarks are listed in table 1.  
Benchmarks were run by applying train 
inputs.  

As mentioned before, the word size of our 
architecture is 32 bits wide. For hash 
functions h3, h5, and h7 we allocated a 64-bit 
register to represent the dynamic branch 
counter and for hash functions h4, h6, and h8 
we used 12 bits for global history.  

 

 

 

 
 
 

 
Table1: Execution statistics of SPECint2000 benchmarks

Benchmark Description #Simulated 
Instructions 

Instruction 
Per Branch 

Cond. 
Branch 

(%) 

Uncond. 
Branch 

(%) 

crafty Chess program 27,216,357,356 8.6547 10.3 1.2 

gap 
Computational group 

theory 
9,518,044,317 6.927 13.05 0 

gcc GNU C compiler 5,117,147,311 6.775 13.25 1.2 

mcf 
Minimum cost network 

flow solver 
9,168,13,14,88 4.4875 19.9 2.3 

twolf Place & route simulator 13,199,966,132 7.9345 11.8 0.8 
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6. Experimental Results 

For the benchmarks listed in table 1, gcc 
and mcf, while having maximum dynamic 
conditional branches relative to the other 
benchmarks, behaved quite differently. So we 
preferred to compare the results of these two 
benchmarks with each other. Figures 4 and 5 
present the simulation results for these two 
benchmarks respectively. 

For gcc, the division (i.e. h1) and 
multiplication (i.e. h2) methods improved the 
prediction accuracy by 0.5 percent relative to 
the direct addressing method (i.e. h0) on the 
average. However, for hash functions h4, h6, 
and h8, we have degradation in the prediction 
accuracy. Although this degradation 
decreases as PHT size increases, there is 
about 5 percent increase in the misprediction 
rate on the average.  

For mcf, the division (i.e. h1) and 
multiplication (i.e. h2) methods made no 
improvement on the prediction accuracy 
relative to the direct addressing method (i.e. 
h0). Nevertheless, for hash functions h4, h6, 
and h8, about 2 percent improvement on the 
prediction accuracy was obtained on the 
average. 

To explain this controversy we should 
refer to the distribution and behavior of the 
branch instructions executed in these two 
benchmarks. If we compare h0 uniformity 
chart of gcc with that of mcf, we can notice 
the difference. As PHT size increases, the 
number of entries remained untouched 
dramatically increases for mcf, whereas for 
gcc this increase is negligible. In addition, 
hash functions h4, h6, and h8, all use the global 
history as their second argument (that is, 
other than the branch address). It seems that 
for mcf, the branches are highly correlated 
with each other, while for gcc this correlation 
is less. Furthermore, for mcf, hash functions 
h4, h6, and h8, utilized almost all entries of 
PHT fairly uniformly relative to h0. While for 
gcc, for all hash functions, good access 
uniformity already exists. 

For both benchmarks, the misprediction 
rates (not shown here) for hash functions h3, 
h5, and h7 relative to h0 is much too 
considerable (about 25 to 30 percent increase 
in the misprediction rate relative to the base 

model). The similarity between these hash 
functions is the use of the dynamic branch 
counter as their second argument. Although 
using this parameter provides best uniformity 
(i.e. all PHT entries, with no exception, 
belong to Category1), the generated result 
contradicts our inference. The reason is 
obvious: the dynamic branch counter cannot 
represent dynamic behavior of a program. So 
in many cases there may branches with 
opposite directions that are hashed to the 
same entry thus increasing destructive [5,7] 
interference. Now if we could have a dynamic 
selection mechanism to dynamically classify 
branches into mostly taken and untaken ones 
(as what is used in the Bi-Mode Predictor 
[3]), then we could claim that using the 
dynamic branch counter would decrease the 
branch misprediction rate due to the 
uniformity it yields. 

7. Future Work & Conclusion 

In this paper, we analyzed the 
performance of different hash methods 
mostly used in applications other than 
computer architecture. For simplicity and 
ease of understanding, we proposed a simple 
bimodal branch predictor and ignored 
hardware difficulties (e.g. delay, area) that 
could be involved.  

We developed our approach by presenting 
9 hash functions (including the direct address 
indexing method). We also classified the 
prediction table entries into 4 categories 
according to their access probability to 
analytically investigate our work.  

The experimental results were dependent 
upon the benchmarks used for the simulation. 
That is, for different benchmarks different 
results were obtained. This difference was 
mainly significant for gcc and mcf 
benchmarks whose branch behavior differs 
from each other. 

Using the dynamic branch counter as the 
second argument for hashing (beside the 
branch address) dramatically degraded the 
prediction accuracy despite yielding best 
access uniformity. The reason of this 
degradation is the numerous destructive 
interferences between oppositely-biased 
branches for most prediction table entries.
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Figure4: The simulation results for benchmark gcc. 
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Figure5: The simulation results for benchmark mcf
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The authors believe that by applying a 
dynamic selection mechanism to dynamically 
classify branches into heavily taken and 
heavily untaken ones, we can best make use 
of access uniformity. The important point 
here is how to design this dynamic selection 
mechanism that can work well for all 
benchmarks with different branch behavior.  

Furthermore, by bringing more parameters 
representing the current behavior of a 
program into our proposed hash functions, it 
is possible to strengthen hash influence on 
branch prediction accuracy. We are currently 
investigating these issues. 
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