
Analyzing Hash Influence on Branch Prediction Accuracy

Mojtaba Shakeri

mshakeri@ce.aut.ac.ir

 Mohammad K. Akbari

akbari@ce.aut.ac.ir

Bahman Javadi

javadi@ce.aut.ac.ir

Department of Computer Engineering and Information Technology
Amirkabir University of Technology

Abstract: Branch prediction is important in
high-performance microprocessor design.
Among branch prediction mechanisms,
dynamic branch predictors are the best
because they can deliver accurate branch
prediction regardless of input changes or the
program behavior. However in all existing
dynamic branch predictors, the interference
effects due to aliasing in the prediction tables
are the most important causes of branch
mispredictions.

In this paper some popular hash functions
used in different computer applications are
proposed and their effects on dynamic
branch predictors are analyzed. We
investigate hash influence on branch
prediction accuracy in both analytical and
experimental ways. Our experimental results
suggest that hash can be incrementally
effective on branch prediction accuracy and
this increase is dependent on branch
behavior.

Keywords- Branch prediction, hash,
uniformity, branch behavior.

1. Introduction

Branch prediction is important in high-
performance microprocessor design. There
are two trends that are increasing the
importance of branch prediction further:
Processors are getting wider and pipelines are
getting deeper. These trends make branch
prediction critical, because they increase the
relative cost of branch mispredictions [1]. It is
argued that by the year 2010 branch
prediction will become the most limiting

factor in processor performance, surpassing
even the limitation of memory system [2].

Among different branch prediction
mechanisms, dynamic branch predictors are
more popular because they can deliver
accurate branch prediction without changes to
the instruction set or pre-existing binaries [3].
But the main problem that reduces the
prediction rate in all existing dynamic
prediction schemes (Gshare [4], The Agree
Predictor [5], The Bi-Mode Predictor [3], The
Skew Branch Predictor [6], The Filter
Mechanism [7], and The YAGS Branch
Predictor [8]) is aliasing between two indices
(an index is typically formed from history and
address bits) that map to the same entry in the
prediction table [8]. One way to reduce
aliasing is to improve the indexing method.
That is, in addition to using the branch
address as its argument, it takes other
arguments representing current program
behavior along with randomization to reduce
aliasing. In this paper we propose hash to be
the solution.

Hash normally consists of three parts: a
hash table, key(s), and a hash function. A
hash table is an effective data structure for
implementing the dictionary operations of
INSERT, SEARCH, and DELETE [9]. In this
paper, we are interested in SEARCH1: given a
branch address as our key, we search the hash
table to predict its direction2. The point here
is instead of using the key as an array index

1 We can assume INSERT, as the operation updating a
prediction-bit counter after a branch is resolved.
2 In this paper, we are interested in predicting the direction of
branches not their targets.

Archive of SID

www.SID.ir

directly, the array index is computed from the
key. This is what a hash function is supposed
to do. Of course due to its critical path, search
for a branch direction in the hash table should
not exceed)1(o time.

Due to hardware difficulties and delay
concerns, practical implementation of almost
all of dynamic branch predictors [3,4,5,6,7,8]
applied the simple linear hashing of modulo-2
addition (XOR function) using branch
address as their primary input (hash-key) and
global/local history as their secondary one. It
should be added that Neural Branch
Prediction [10], a recent concept in branch
prediction, also exploits hashing techniques.
It uses the adaptive and flexible behavior of
neural networks to predict branch directions
[11]. In this technique, table of perceptrons
(or neurons) is indexed by address hash.
These perceptrons contain array of weights
corresponding to history bits [10]. By using a
hash method based on multiplying history bits
by their respective weights, direction of a
given branch is determined. This new
technique needs more work to meet current
hardware and timing requirements and we do
not elaborate on it any more.

In this paper, different models using a
particular hash function are analyzed. Section
2, compares a direct access table with a hash
table. Section 3, introduces some common
hash functions used in different computer
applications now targeted at branch
prediction. Section 4 does an analysis on
access probability of each entry and
categorizes them into 4 classes. Section 5
describes our simulation methodology.
Section 6 presents our experimental results.
And section 7 concludes this study and
proposes our future research directions.

2. Direct-Access Table vs. Hash Table

Direct addressing is a simple technique
that works well when the universe U of keys
is reasonably small [9], i.e. total number of
branches executed is comparable with number
of static branches in a program. This is our
base model (figure1). Successive models
presented next are compared with this model.

When a branch is fetched, its key (i.e. its
address) is drawn from the universe

}{ 1,...,1,0 −= mU . To obtain the direction,

we use an array or a direct-address table,
denoted by []1..0 −= mT in which each
position or slot (i.e. branch predicted
direction) corresponds to a key in universe U.
Now the search operation is defined as [9]:

DIRECT_ADDRESS_SEARCH (T,k)
 return T[k]

Prediction Table

Branch Address

Figure1: A direct address indexing model.

The difficulty with direct addressing is
obvious: if the universe U is large, storing a
table T of size |U| may be impractical, or
even impossible. Furthermore, the set k of
keys actually stored may be so small relative
to U that most of the space allocated for T
would be wasted [9]. That is, many elements
would be mapped to the same slots. In other
words, it is not possible to hold all relevant
branch history for all active branches at the
same time [6] and branch interference would
be considerable if only branch addresses were
used for indexing. (Here |U| is number of
dynamic branches and |k| is number of static
branches).

With direct addressing, a branch direction
with address k is found in entry k. While with
hashing, its direction is found in entry h(k).
That is, we use a hash function h to compute
entry (slot) from the address (key) k. Figure 2
shows how hashing is used in our approach.
Here h maps the universe U of keys into the
slots of a hash table []1..0 −= mT :

{ }1,...,1,0: −→ mUh

Archive of SID

www.SID.ir

Prediction Table

Branch Address

Hash Function

Other
inputs

Figure2: How hashing can be used for branch
prediction.

Similar to direct address indexing, we still
may have the problem of aliasing: two keys
may be mapped to the same slot. This
situation is also called a collision [9]. The
ideal solution would be to avoid collisions
altogether. We might try to achieve this goal
by choosing a suitable hash function h. One
idea is to make h appear to be random, thus
avoiding collisions or at least minimizing
their number. The very term “to hash”
evoking images of random mixing and
chopping captures the spirit of this approach
[9]. Next section discusses hash functions that
somehow consider randomization in their
mappings.

3. Hash Functions

In this section some well-known hash
functions are introduced, but before that, let’s
know what makes a good hash function. A
good hash function satisfies (approximately)
the assumption of simple uniform hashing;
each key is equally likely to hash to any of
the m slots, independently of where any other
key has hashed to [9]. Unfortunately it is
typically not possible to check this condition,
since one rarely knows the probability
distribution according to which the keys are
drawn and the keys may not be drawn
independently. This problem is particularly
obvious for branch prediction, since each
branch is dependent upon previous executions
of itself or other branches. We will talk about
uniformity more in section 4.

3.1 The division method
In the division method for creating hash

functions, we map a key into one of m slots
by taking the remainder of k divided by m.
Therefore, the hash function is [9]:

mkkh mod)(=

Where in our design, k is the branch
address and m is the length of the prediction
table. Should m be a power of two, then this
model simply gets our base model defined in
section 2 (e.g. if m = 2p then h(k) is just the p
lowest-order bits of k). Unless it is known
that all low-order p-bit patterns are equally
likely, it is better to make the hash-function
depend on all the bits of the key [9].

Ignoring hardware difficulties we would
encounter while implementing this method,
we choose a prime not too close to an exact
power of two. It is often a good choice for m
[9]. (It should be reminded that in this paper
we are interested in realizing the effectiveness
of hashing on branch prediction accuracy).

3.2 The multiplication method
The multiplication method for creating

hash functions operates in two steps. First, we
multiply the key k by a constant A in the
range 0 < A < 1 and extract the fractional part
of kA. Then we multiply this value by m and
take the floor of the result. In short, the hash
function is [9]:

� �)1mod()(kAmkh =

Where “kA mod 1” means the fractional
part of kA, that is, � �kAkA− . An advantage

of the multiplication method is that the value
of m is not critical. So we choose it to be a
power of two (m = 2p for some integer p) to
be hopeful that it would be easily
implemental in hardware!

Suppose that the word size of our
architecture is w-bits (here w = 32) and that k
fits into a single word. We restrict A to be a

fraction of the form ws 2 , where s is an
integer in the range 0< s <2w. Referring to
figure 3, we first multiply k by the w-bit

integer s = A⋅2w. The result is a 2w-bit value
r12

w + r0, where r1 is the high order word of
the product and r0 is the low-order word of
the product. The desired p-bit hash value
consists of the p most significant bits of r0
(practically p << m) [9].

Although this method works with any
value of the constant A, it has been shown
that

Archive of SID

www.SID.ir

...6180339887.02
)15(=−≈A

is likely to work reasonably well [9].

For our architecture, where 32=w , we

have 2654435769=s and 322
sA = .

k

s = A . 2w

r0r1

h(k)

×

w bits

extract p bits

Figure3: The multiplication method of hashing.

3.3 Open addressing
In the three models introduced so far, for a

particular branch during a program execution,
a particular entry is always used. In other
words, if this branch executes several times,
its predicted direction is always determined
by a specific entry.

It is common notice that a branch behavior
might alter during the program execution.
Now if a particular entry is only used to
predict this branch direction, number of
mispredictions occurring could be
considerable. Moreover, this entry may be
used for other branches of different directions
(that is, collision or aliasing). This is one of
the drawbacks pointing to address-only
branch prediction mechanisms.

Now if we enter another element as an
indicator of the present program behavior to
our hash function, then we can defeat this
shortcoming to great extent. This is the idea
behind open addressing. Three techniques are
commonly used in open addressing: linear
probing, quadratic probing, and double
hashing [9] that due to our application, only
two of them are addressed here.

3.3.1 Linear probing
Given an ordinary hash function:

{ }1,...,1,0: −→′ mUh

as an auxiliary hash function, the method of
linear probing uses the hash function [9]:

mikhikh mod))((),(+′=

Now if consider k as our branch address,
h'(k) as the hash function of our base model
(i.e. h'(k) = k), i as the global branch history
register, and ‘+’ as the modulo–2 addition,
then we have the famous g-share branch
prediction scheme [4].

In our simulation (discussed in section 5),
we take i as:

1. Dynamic branch counter (It is
indicative of current number of
branches executed dynamically in a
program).

2. Branch global history register.

3.3.2 Double Hashing
Double hashing is one of the best methods

available for open addressing. Because the
patterns produced have many of the
characteristics of randomly chosen patterns.
Double hashing uses a hash function of the
form:

mkhikhikh mod))()((),(′′⋅+′=

where h′ and h ′′ are auxiliary hash
functions.

The value h"(k) must be relatively prime
to the hash-table size m for the entire hash
table to be searched. A convenient way to
ensure this condition is to let m be a power of
two and to design h" so that it always
produces an odd number (e.g. we can OR the
LSB bit by one). Another way is to let m be
prime and to design h" so that it always
returns a positive integer less than m. For
example, we could choose m prime and let:

mkkh mod)(=′ ,

)mod(1)(mkkh ′+=′′
,

where m' is chosen to be slightly less than m
(say, m – 1).

4. Analysis

In this section, we investigate our
approach analytically before we do the
simulation.

Archive of SID

www.SID.ir

Given a hash table T with m slots (entries)
that is accessed n times during a program
execution where n >> m, we define the load
factor � for T as mn , that is, the average
number of accesses to each slot.

The average performance of hashing
depends on how well the hash function h
distributes the set of keys to be stored among
the m slots, on the average. Here we assume
that any given element is equally likely to
hash into any of the m slots, independently of
where any other element has hashed to. We
call this the assumption of simple uniform
hashing [9].

For 1,...,1,0 −= mj , let us denote the

number of accesses to jslot by jn , so that

110 ... −+++= mnnnn ,

and the average value of jn is

m
nnE j == α][.

We also define jp as jslot access

probability, that is, nnp jj = and the

average value of jp is

mn
m

n

n
nE

pEq j
j

1][
][====

Now we use q as our crucial item to
classify the prediction table entries into 4
categories ranging from Category0 to
Category3:

• Category0: Those entries that remain
untouched (useless), during a
program execution, belong to this
category.

• Category1: This category contains
those entries whose access
probability ranges from 0 to q. In
fact, the more entries belong to this
category, the more effective the
indexing method is.

• Category2: This category consists of
those entries whose access
probability ranges from q to qlog2

m.
The reason why we have put the
parameter log2

m in our classification
is to consider the effect of the number
of the prediction table entries (i.e. m)

in our simulation. In other words, the
region of each category is directly
related to the number of the
prediction table entries.

• Category3: This category contains
those entries whose access
probability is more than qlog2

m.

Now we define the hash functions used in
our simulation:

• ,)(: 00 kkhfunc =

in which k is the branch address. This
is our base model in which the branch
address is directly used for indexing.

• ,mod)(: 11 mkkhfunc =
where k is the branch address and m
is a prime standing for the prediction
table size. This hash function is based
on the division method.

• � �,)1mod()(: 22 kAmkhfunc =
in which k is the branch address, m
represents the prediction table size
and it is a power of two (m = 2p for
some integerp), and A is a constant

equal to 2)15(− .

• ,mod))((),(: 33 mikhikhfunc +′=
where k is the branch address, h'(k) is
equal to h0(k), m represents the
prediction table size and it is a power
of two (m = 2p for some integer p), i
is the dynamic branch counter, and
‘+’ is the modulo–10 addition.

• ,mod))((),(: 44 mikhikhfunc +′=
where k is the branch address, h'(k) is
equal to h0(k), m represents the
prediction table size and it is a power
of two (m = 2p for some integer p), i
is the global history register, and ‘+’
is the modulo–10 addition.

•
,mod))()((),(

:

5

5

mkhikhikh

func

′′⋅+′=
where k is the branch address, h'(k) is
equal to h1(k), h"(k) is equal to (h0(k)
mod m – 1), m is a prime indicating
the prediction table size, i is the
dynamic branch counter, and ‘+’ is
the modulo–10 addition.

Archive of SID

www.SID.ir

•
,mod))()((),(

:

6

6

mkhikhikh

func

′′⋅+′=
where k is the branch address, h'(k) is
equal to h1(k), h"(k) is equal to (h0(k)
mod m – 1), m is a prime indicating
the prediction table size, i is the
global history register, and ‘+’ is the
modulo–10 addition.

•
,mod))()((),(

:

7

7

mkhikhikh

func

′′⋅+′=
where k is the branch address, h'(k) is
equal to h2(k), h"(k) is equal to
h0(k)|1 , m represents the prediction
table size and it is a power of two
(m = 2p for some integer p), i is the
dynamic branch counter, and ‘+’ is
the modulo–10 addition.

•
,mod))()((),(

:

8

8

mkhikhikh

func

′′⋅+′=
where k is the branch address, h'(k) is
equal to h2(k), h"(k) is equal to
h0(k)|1, m represents the prediction
table size and it is a power of two
(m = 2p for some integer p), i is the
global history register, and ‘+’ is the
modulo–10 addition.

5. Simulation Methodology

Performance of each hash function
proposed in section 4 was measured by
instruction-driven simulations performed on
the SPECint2000 benchmarks [12]. Five
SPECint2000 benchmarks were used for our
evaluation: crafty, gap, gcc, mcf, and twolf.
(SPECfp2000 benchmarks are not considered
in our simulation, since they present high
prediction accuracy even in case of using
poor branch prediction mechanisms). We
used Simplescalar’s bpred simulator
(modified to fulfill our requirements) [13] as
our simulation tool. The execution statistics
of these benchmarks are listed in table 1.
Benchmarks were run by applying train
inputs.

As mentioned before, the word size of our
architecture is 32 bits wide. For hash
functions h3, h5, and h7 we allocated a 64-bit
register to represent the dynamic branch
counter and for hash functions h4, h6, and h8
we used 12 bits for global history.

Table1: Execution statistics of SPECint2000 benchmarks

Benchmark Description #Simulated
Instructions

Instruction
Per Branch

Cond.
Branch

(%)

Uncond.
Branch

(%)

crafty Chess program 27,216,357,356 8.6547 10.3 1.2

gap
Computational group

theory
9,518,044,317 6.927 13.05 0

gcc GNU C compiler 5,117,147,311 6.775 13.25 1.2

mcf
Minimum cost network

flow solver
9,168,13,14,88 4.4875 19.9 2.3

twolf Place & route simulator 13,199,966,132 7.9345 11.8 0.8

Archive of SID

www.SID.ir

6. Experimental Results

For the benchmarks listed in table 1, gcc
and mcf, while having maximum dynamic
conditional branches relative to the other
benchmarks, behaved quite differently. So we
preferred to compare the results of these two
benchmarks with each other. Figures 4 and 5
present the simulation results for these two
benchmarks respectively.

For gcc, the division (i.e. h1) and
multiplication (i.e. h2) methods improved the
prediction accuracy by 0.5 percent relative to
the direct addressing method (i.e. h0) on the
average. However, for hash functions h4, h6,
and h8, we have degradation in the prediction
accuracy. Although this degradation
decreases as PHT size increases, there is
about 5 percent increase in the misprediction
rate on the average.

For mcf, the division (i.e. h1) and
multiplication (i.e. h2) methods made no
improvement on the prediction accuracy
relative to the direct addressing method (i.e.
h0). Nevertheless, for hash functions h4, h6,
and h8, about 2 percent improvement on the
prediction accuracy was obtained on the
average.

To explain this controversy we should
refer to the distribution and behavior of the
branch instructions executed in these two
benchmarks. If we compare h0 uniformity
chart of gcc with that of mcf, we can notice
the difference. As PHT size increases, the
number of entries remained untouched
dramatically increases for mcf, whereas for
gcc this increase is negligible. In addition,
hash functions h4, h6, and h8, all use the global
history as their second argument (that is,
other than the branch address). It seems that
for mcf, the branches are highly correlated
with each other, while for gcc this correlation
is less. Furthermore, for mcf, hash functions
h4, h6, and h8, utilized almost all entries of
PHT fairly uniformly relative to h0. While for
gcc, for all hash functions, good access
uniformity already exists.

For both benchmarks, the misprediction
rates (not shown here) for hash functions h3,
h5, and h7 relative to h0 is much too
considerable (about 25 to 30 percent increase
in the misprediction rate relative to the base

model). The similarity between these hash
functions is the use of the dynamic branch
counter as their second argument. Although
using this parameter provides best uniformity
(i.e. all PHT entries, with no exception,
belong to Category1), the generated result
contradicts our inference. The reason is
obvious: the dynamic branch counter cannot
represent dynamic behavior of a program. So
in many cases there may branches with
opposite directions that are hashed to the
same entry thus increasing destructive [5,7]
interference. Now if we could have a dynamic
selection mechanism to dynamically classify
branches into mostly taken and untaken ones
(as what is used in the Bi-Mode Predictor
[3]), then we could claim that using the
dynamic branch counter would decrease the
branch misprediction rate due to the
uniformity it yields.

7. Future Work & Conclusion

In this paper, we analyzed the
performance of different hash methods
mostly used in applications other than
computer architecture. For simplicity and
ease of understanding, we proposed a simple
bimodal branch predictor and ignored
hardware difficulties (e.g. delay, area) that
could be involved.

We developed our approach by presenting
9 hash functions (including the direct address
indexing method). We also classified the
prediction table entries into 4 categories
according to their access probability to
analytically investigate our work.

The experimental results were dependent
upon the benchmarks used for the simulation.
That is, for different benchmarks different
results were obtained. This difference was
mainly significant for gcc and mcf
benchmarks whose branch behavior differs
from each other.

Using the dynamic branch counter as the
second argument for hashing (beside the
branch address) dramatically degraded the
prediction accuracy despite yielding best
access uniformity. The reason of this
degradation is the numerous destructive
interferences between oppositely-biased
branches for most prediction table entries.

Archive of SID

www.SID.ir

gcc

7

9

11

13

15

17

19

21

0 1000 2000 3000 4000 5000
PHT size

M
P

R
 (%

)
h0

h1

h2

gcc

7

9

11

13

15

17

19

21

23

25

27

29

0 1000 2000 3000 4000 5000
PHT size

M
P

R
 (

%
)

h0

h4

h6

h8

h0 uniformity chart (gcc)

0
10
20
30
40
50
60
70
80
90

64 128 256 512 1024 2048 4096

PHT size

ac
ce

ss
 p

ro
b

ab
il

it
y

category0

category1

category2

category3

h1 uniformity chart (gcc)

0
10
20
30
40
50
60
70
80
90

23 79 191 431 919 1913 3947

PHT size

ac
ce

ss
 p

ro
b

ab
il

it
y

category0

category1

category2

category3

h2 uniformity chart (gcc)

0
10
20
30
40
50
60
70
80
90

64 128 256 512 1024 2048 4096

PHT size

ac
ce

ss
 p

ro
b

ab
il

it
y

category0

category1

category2

category3

h4 uniformity chart (gcc)

0

20

40

60

80

100

64 128 256 512 1024 2048 4096

PHT size

ac
ce

ss
 p

ro
b

ab
il

it
y

category0

category1

category2

category3

h6 uniformity chart (gcc)

0

20

40

60

80

100

23 79 191 431 919 1913 3947

PHT size

ac
ce

ss
 p

ro
b

ab
il

it
y

category0

category1

category2

category3

h8 uniformity chart (gcc)

0

20

40

60

80

100

64 128 256 512 1024 2048 4096

PHT size

ac
ce

ss
 p

ro
b

ab
il

it
y

category0

category1

category2

category3

Figure4: The simulation results for benchmark gcc.

Archive of SID

www.SID.ir

mcf

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

0 2000 4000 6000
PHT size

M
P

R
 (%

)
h0

h1

h2

mcf

4

6

8

10

12

14

16

0 2000 4000 6000
PHT size

M
P

R
 (%

)

h0

h4

h6

h8

h0 uniformity chart (mcf)

0
10
20
30
40
50
60
70
80
90

64 128 256 512 1024 2048 4096

PHT size

ac
ce

ss
 p

ro
b

ab
il

it
y

category0

category1

category2

category3

h1 uniformity chart (mcf)

0
10
20
30
40
50
60
70
80
90

23 79 191 431 919 1913 3947

PHT size

ac
ce

ss
 p

ro
b

ab
il

it
y

category0

category1

category2

category3

h2 uniformity chart (mcf)

0
10
20
30
40
50
60
70
80
90

64 128 256 512 1024 2048 4096

PHT size

ac
ce

ss
 p

ro
b

ab
il

it
y

category0

category1

category2

category3

h4 uniformity chart (mcf)

0

20

40

60

80

100

64 128 256 512 1024 2048 4096

PHT size

ac
ce

ss
 p

ro
b

ab
il

it
y

category0

category1

category2

category3

h6 uniformity chart (mcf)

0

20

40

60

80

100

23 79 191 431 919 1913 3947

PHT size

ac
ce

ss
 p

ro
b

ab
il

it
y

category0

category1

category2

category3

h8 uniformity chart (mcf)

0

20

40

60

80

100

64 128 256 512 1024 2048 4096

PHT size

ac
ce

ss
 p

ro
b

ab
il

it
y

category0

category1

category2

category3

Figure5: The simulation results for benchmark mcf

Archive of SID

www.SID.ir

The authors believe that by applying a
dynamic selection mechanism to dynamically
classify branches into heavily taken and
heavily untaken ones, we can best make use
of access uniformity. The important point
here is how to design this dynamic selection
mechanism that can work well for all
benchmarks with different branch behavior.

Furthermore, by bringing more parameters
representing the current behavior of a
program into our proposed hash functions, it
is possible to strengthen hash influence on
branch prediction accuracy. We are currently
investigating these issues.

Acknowledgement

This work was funded by I.T.R.C. (Iran
Telecommunications Research Center).

References

[1] M. Evers, and T.-Y.,
“Understanding branches and
designing branch predictors for
high-performance microprocessors,”
invited paper in Proc. IEEE, Vol.
89, No. 11, pp. 1610-1620, 2001.

[2] A. N. Eden, J. Ringenberg, S.
Sparrow, and T. N. Mudge, “Hybrid
myths in branch prediction,” in
Proc. the 7th Int. Conf. on
Information Systems Analysis and
Synthesis (ISAS 2001), 2001.

[3] C.-C. Lee, I.-C. K. Chen, and T. N.
Mudge, “The bi-mode branch
predictor,” in 30th ACM/IEEE Int.
Symp. Microarchitecture, 1997.

[4] S. McFarling, “Combining branch
predictors,” Digital Equipment
Corporation, WRL Tech. Note TN-
36, 1993.

[5] E. Sprangle, R. S. Chappell, M.
Alsup, and Y. N. Patt, “The agree
predictor: A mechanism for
reducing negative branch history
interference,” in Proc. 24th Annu.
Int. Symp. Computer Architecture,
1997.

[6] P. Michaud, A. Seznec, and R.
Uhlig, “Trading conflict and
capacity aliasing in conditional
branch predictors,” in 24th Annu. Int.
Symp. Computer Architecture, 1997.

[7] P.-Y. Chang, M. Evers, and Y. N.
Patt, “Improving branch prediction
accuracy by reducing pattern history
table interference,” in Proc. Int.
Conf. Parallel Architectures and
Compilation Techniques, 1996.

[8] A. N. Eden and T. N. Mudge, “The
YAGS branch predictor,” in Proc.
31st Int. Symp. Computer
Architecture, 1998.

[9] T. H. Cormen, C. E. Leiserson, R.
L. Rivest, and C. Stein, Introduction
to Algorithms (Second Edition),
published by MIT Press and
McGraw-Hill, 2001.

[10] J. Jenkins and J. M. Phillips,
“Feature Added Branch Prediction
In Multilevel Pipelines,” Technical
Report, Dec. 2003.

[11] C. M. Bishop, Neural Networks for
Pattern Recognition, published by
Oxford University Press, 2000.

[12] Standard Performance Evaluation
Corp, SPECCPU2000 Benchmarks,
http://www.specbench.org

[13] D. Burger, T. Austin, “The
simplescalar tool set, version2.0,”
Technical Report TR 1342,
University of Wisconsin, 1997.

Archive of SID

www.SID.ir

