
Arc
hi

ve
 o

f S
ID

Application of Reinforcement Learning to
Control System Design

Mahdieh Shadi1, S. D. Katebi2
Department of Computer Science

School of Engineering
Shiraz University

shadi@cse.shirazu.ac.ir

Abstract

This paper is concerned with the development of an online Reinforcement Learning (RL)
technique that significantly improves the control systems behavior. The reinforcement
learner is based on Q-learning and the final controller is an artificial neural network whose
weights are tuned by on line learning. In order to speed up the learning processes and
prevent the plant from the instability, initially a PID is utilized as an augmented controller
until the reinforcement learning becomes capable of keep the system stable and prevent the
system from undesirable behavior. Example of use is presented and the effectiveness of the
proposed approach is shown.

1- Introduction

Most control design techniques require a very accurate mathematical model of the plant,
which is not available in many real problems. Reinforcement learning (RL) algorithms, on
the other hand, are able to explore and learn to improve control performance without the
knowledge of the analytical system model.
It is well known that RL agents can learn optimal behaviors in an unknown environment
through online, trial and error exploration and exploitation, when certain conditions are
satisfied [1]. Therefore, using reinforcement learning techniques as part of a controller
could be an approach for regaining the loss of performance that may be caused by many
factors such as disturbances and excessive noise.
One approach is to replace the traditional controller completely with a reinforcement
learner. Kavehercy [2] applied this approach to a water vessel process control problem.
Another approach is to use RL to tune the parameters of a traditional controller aiming at
the best performance [3]. In a paper by Anderson [4] new reinforcement learning

1-M.Sc. Student
2- Professor

www.SID.ir

Arc
hi

ve
 o

f S
ID

architectures were proposed and studied. Development in this paper follows this latest
report. Firstly, in our work all state variables are used by the RL, providing more degree of
freedom, while in the above mentioned report only the output or tracking error are used.
Secondly, previous researches demonstrate RL technique on a first order system with a
random input signal, however, in this work a second order system with step input is
considered.

2- Problem statement

The role of the agent as a reinforcement learner and as the controller is depicted in Figure
(1). Figure (1.a) is the canonical representation of a specific type of reinforcement learner:
a Q-learning agent [5]. A state/action pair is input to the Q-learner to produce the value
function representative of the input pair. This value function is commonly referred to as a
Q-value. The Q-learning agent specifically implements the reinforcement learner by
storing value functions .Via these value functions, the Q-learner can perform policy
evaluation and policy improvement. Sutton, Barto and Kaelbling [1, 6] provide detailed
description of Q-learners and value functions .The diagram in Figure (1.b) shows the agent
in the role of a controller. Input to this agent is the current stats of the system the output is
the agent's control signal. This agent implements a control policy.

Figure1: Reinforcement Learning and Control Agents

Earlier efforts in reinforcement learning architecture utilized the actor-critic design. Actor-
critic architectures are treated in [1] and only a brief description is given here. One of the
Actor-critic architectures is called TD method that has a separate memory structure to
explicitly represent the policy independent of the value function. The policy structure is
known as the actor, because it is used to select actions, and the estimated value function is
known as the critic, because it criticizes the actions made by the actor. Learning is always
on-policy: the critic must learn about and critique whatever policy is currently being
followed by the actor. The critique takes the form of a TD error. This scalar signal is the
sole output of the critic and drives all learning in both actor and critic, as suggested by
Figure 2:

Figure 2: Actor-Critic Agent

www.SID.ir

Arc
hi

ve
 o

f S
ID

Typically, the critic is a state-value function. After each action selection, the critic
evaluates the new state to determine whether things have gone better or worse than
expected. That evaluation is the TD error:

1 1 1(,) (,)t t t t t tr Q s a Q s aδ γ+ + += + − (1)

Where Q is the current value function implemented by the critic. This TD error can be
used to evaluate the action just selected, the action ta taken in state ts . If the TD error is
positive, it suggests that the tendency to select ta should be strengthened for the future,
whereas if the TD error is negative it suggests the tendency should be weakened.

The actor network can be thought of as the control agent, because it implements a policy.
This is a part of the dynamic system as it interacts directly with the system by providing
control signals for the plant. The critic network implements the reinforcement learning part
of the agent as it provides policy evaluation and can be used to perform policy
improvement. This learning agent architecture has the advantage of implementing both a
reinforcement learner and a controller.

First, a topology for a Neural Network (NN) representing the actor (the controller) is
selected. This is usually a two layer feed forward multilayer perceptron, as shown in Figure
(3). The NN architecture with tanh activation function in hidden layer explicitly
implements a policy as a mathematical function and is therefore amenable to the stability
analysis [7].

Figure3: Actor

Next attention is turned to the critic network (the reinforcement learner). As mentioned
earlier, the critic accepts a set of state and action as inputs and produces the value function
for the state/action pair, as shown in Figure(4). A so called Cerebellar Model Articulation
Controller (CMAC) network is a more sophisticated variant of table lookup methods [8, 9]
which features an improved ability to generalize on learning examples. Often CMAC
networks require more training time than table lookup methods to reach their final weight
values.

Figure4: Critic

www.SID.ir

Arc
hi

ve
 o

f S
ID

In this work architecture is proposed that utilizes the internal states of the plant more
effectively. Firstly, an approximate PID controller which ensures the system stability is
designed. The online Reinforcement Learner, as outlined below is invoked in parallel with
PID controller to learn those control actions which improve the system performance that
is, either reducing the tracking error or regulating correctly as the case may be. The
complete design procedures and the main computational step of the proposed method are
outlined below.

3- Implementation

The proposed Q-learning parameters and algorithms are described below.

a)- Actor/critic configurations

(i) Actor Net:

• feed-forward ,two-layer ,neural network
• parameterized by input and output weights
• n (number of inputs) includes the tracking error, plant states and bias.
• m (number of outputs) here is only one, the control action.
• h (number of hidden units) can be small for faster learning.
• tanh is hidden unit activation function and activation function of output unit is

linear.
• Trained via back propagation (gradient descent).

(ii) Critic Net:
• table look-up
• parameterized by table ,Q
• n-1+m input signal.
• a single output Q (s,a)
• Trained via Q-learning.

b) Reward punishment and learning parameters

• Punishment: abs(error)
• State: plant state ,tracking error and bias(only for actor net)

c) Learning Algorithm:

1. Initialize State, weights, learning rates
2. Send State to actor and calculate action u
If stopping criteria is satisfied then stop
3. Send State and action,u to critic and calculate Q_ value of current State.
4. Update critic for Q_ value of old State using Q_ learning algorithm
 [])()(min)()(oldstateQtecurrentstaQerroroldstateQoldstateQ

action
−++= γα

5. Find the optimal action ∗u (ln

^

U =small local neighborhood of u

),(min ln^

ln

usateQu
Uu∈

∗ =)

www.SID.ir

Arc
hi

ve
 o

f S
ID

6. Update actor weights for current State by using ∗u .
7. Use ∗u and states to calculate new action.
8. Sum action u with PID output as control action to plant.
9. Calculate new plant states, tracking error from the simulation program.
10. If time is equal End Time, end this episode.
11. Go to 2

The main purpose of the RL is to tune the weights of the actor network, and critic output
from the CMAC (look up table) representing the stat action value. These parameters are
updated in an iterative manner until halting criteria are satisfied .The input output training
pair for the actor network are current tracking error and current states and the control
action respectively. The control action acts on the system to produce new states. These new
states and the error are sent to the critic as input for the evaluation of the action values
based on the Q-learning.
The critic network table stores the action values. The table is indexed by state/action pairs.
Each entry in the table refers to the value of a particular state/action pair. Recall that value
refers to the sum of the future tracking errors over time. In reinforcement learning, we
compute the temporal difference error and then perform gradient descent to update the
table entries so as to minimize the temporal difference error. In the next step, we use the
back propagation algorithm to train the actor network and use the information in the critic
network to compute the training exemplar for actor.
The information stored about the state/action values by the critic network are used to find
the optimal control action u . For this purpose, first we define an interval

^

lnU as a local
neighborhood around the actor network's current output. Since it is desired that the actor
net make small incremental adjustments to its control action, it is not necessary to select a
large neighborhood foru . Therefore, a grid of control actions is mapped out within the
small neighborhood

^

lnU to find the control action with the smallest value function
according to the critic network. We use this value as the training exemplar for the actor
network. Next the state information is updated, and the algorithm repeated for a set of new
training sample.

4- Example

The system under consideration is described by the following open loop transfer function:

2

5
()

2 4
P s

s s
=

+ +
 (2)

The reinforcement learning proceeds according to the followings.

Actor Net:

• n(number of inputs) = 4.(plant states: 21 , xx and error and bias)
• m =1 (action policy).
• h =3 (number of hidden units).

Critic Net:

• number of inputs = 4 (plant states: 21 , xx and error and action u)

www.SID.ir

Arc
hi

ve
 o

f S
ID

• output=1 (Q-value)

A trail and error and approximate parameters for the PID controller are chosen
as 5,1.,25 === dip kkk . The response of the plant to a step input with this setting of the
PID controller as the only control action is shown in Figure (5) as the solid curve. It is seen
that this control configuration is not capable of eliminating the steady state error.

Figure5: Response of system

The internal state of the plant and tracking error are used as input to critic. As explained
above Actor Network is a two layer feed forward network. The state space representation
of the system is as follows:

2

12

211 42

xy

xx

uxxx

=
=

+−−=
•

•

 (3)

The Simulink implementation of the above state space model is shown in Figure (6).

www.SID.ir

Arc
hi

ve
 o

f S
ID

Figure6: Implementation of State Space

The complete reinforcement learning configuration is shown in Figure (7). For a unit step
input, after 22 iterations the steady state error has been eliminated as shown in Figure (5)
the dashed curve.

Figure 7: Combined PID controller and reinforcement learner

5- Conclusion

A control deign procedure based on reinforcement learning is developed. Although there
are several different techniques for implementation of RL, a modified version of Q-
learning which utilizes Temporal Difference has been implemented in this work. The actor
which evaluates the learning policy function is implemented as a simple feed forward
neural network trained by the back propagation algorithms using the systems parameters
such as the internal states and systems tracking error for the training data. The critic that
evaluated action values is in the form of a simple look up table being updated and refined
based on TD learning. The procedure has been tested on a second order system. The result

www.SID.ir

Arc
hi

ve
 o

f S
ID

shows a significant improvement over the classical PID controller. The main advantage of
RL is that no knowledge of the model of the systems is required and the learning is solely
based on the trial and error and particularly interaction with the environment.

Reference:

[1] Sutton, R. S. and Barto, A.G. Reinforcement Learning: An Introduction. The MIT
Press, (1998).
[2] Kavehercy, S,Reinforcement learning and Artificial Neural Networks: The optimal
control of water vessel process, M.Sc. thesis, University of Amsterdam, (1996).
[3] M.N. Howell, T.J. Gordon, Continuous action reinforcement learning automata and
their application to adaptive digital filter design, Engineering Applications of Artificial
Intelligence pp. 549-561, (2001).
[4] Anderson, C., Hittle, D., Katz, A., and Kretchmar, R. Reinforcement learning combined
with PI control for the control of a heating coil. Journal of Artificial Intelligence in
Engineering, (1996).
[5] Watkins, C. J. Learning from delayed rewards. PhD thesis, Cambridge
University,(1989).
[6] Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. Reinforcement learning: A
survey.Journal of Artificial Intelligence, (1996).
[7] Kretchmar, R. M A synthesis of reinforcement learning and robust control theory, (2000).
[8] Miller, W. T., Glanz, F. H., and Kraft, L. G. CMAC: An associative neural network
alternative to back propagation. Proceedings of the IEEE, 78:1561-1567, (1990).
[9] Sutton, R. S. Generalization in reinforcement learning: Successful examples using
sparse course coding. In Advances in Neural Information Processing Systems 8, (1996).
[10] Kretchmar, R. M. and Anderson, C. W. Comparison of CMACS and radial basis
functions for local function approximation in reinforcement learning. In ICNN'97:
Proceedings of the International Conference on Neural Networks. ICNN, (1997).
[11] Kretchmar, R. M. and Anderson, C. W. Using temporal neighborhoods to adapt
function approximator in reinforcement learning. In IWANN'99: International Workshop
on Artificial Neural Networks. IWANN, (1999).

www.SID.ir

