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Abstract 

 
Item Response Theory (IRT) is a model for expressing the association between an individual's 
response to an item and the underlying latent variable (ability) being measured by the instrument. 
Item Characteristic Curves (ICCs) are one of the basic blocks of an Item Response Theory, and 
their parameters (difficulty, discrimination and guessing) must be estimated accurately. The 
estimated parameters will subsequently be used to form ICCs of an exam upon which other latter 
judgments about examinees’ abilities will be made. Regarding the importance of assessment in 
learning process and reaching accurate estimations about learners' abilities, this paper is focused 
on a comparative approach for finding the best technique of estimating these parameters. The 
criterion for such an optimization is the chi-square goodness of fit. Results show that Genetic 
Algorithms obtain the best estimations among two other applied techniques. 
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1. Introduction 
 

Intelligent Tutoring Systems (ITS) have to provide individualized tutoring and instructions. 
They have a multidisciplinary approach, and have been benefited by many fields of research such 
as psychology, education, artificial intelligence, networking and so on, to build finally an electronic 
system of personalized teaching and learning. During a course, an Intelligent Tutoring System has 
to observe learners' abilities and improvements to decide on the next steps of tutoring. Therefore 
they are to be concerned with experiments of educational assessment. 

In educational assessment, we observe what students say, do, or make in a few particular 
circumstances and attempt to infer what they know, can do, or have accomplished more generally. 
Some links in the chain of inference depend on statistical models and probability-based reasoning, 
and it is with these links that terms such as validity, reliability, and comparability are typically 
associated—“psychometric principles,” as it were. Familiar formulas and procedures from test 
theory provide working definitions and practical tools for addressing more broadly applicable 
qualities of the chains of argument from observations to inferences about students, as they are 
applied to familiar methods of gathering and using assessment data [1]. 

The increasing need for psychometrically-sound measures calls for better analytical tools 
beyond what traditional measurement theory (or classical test theory, CTT) methods can provide 
[3]. Item Response Theory (IRT) has a number of advantages over CTT methods to assess learning 
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outcomes, including (a) detailed descriptions of the performance of individual test items; (b) 
indices of item- and scale-level precision that are free to vary across the full range of possible 
scores; (c) assessments of item- and test-level bias with respect to demographic subgroups of 
respondents; (d) measures of each examinee’s response-profile quality and consistency; and (e) 
computer-adaptive test (CAT) administration, which can dramatically reduce testing time without 
sacrificing measurement precision[2]. 

Because of these advantages, IRT is being applied in many research areas to develop new 
measures or improve existing measures, to investigate group differences in item and scale 
functioning, to equate scales, and to develop computerized adaptive tests [4]. 

While the basic concepts of IRT are straight forward, the underlying mathematics is somehow 
advanced compared to that of CTT, and it is difficult to examine some of these concepts without 
performing a large number of calculations to obtain usable information which is sometimes a hard 
and also a time-consuming task. 

The goal of this paper is to test some different applicable techniques of optimization to improve 
IRT functions. Here the focus is on "item characteristic curves". 

Organization of this paper is as follows: in section two and three, IRT and its Item 
Characteristic Curves are introduced. In section four the problem of estimating ICC parameters are 
explained and it is shown how optimization can be performed using different optimization 
techniques. Finally the results are compared and the best optimization method is proposed. 
 
2. Item Response Theory 

 
In the past decade, applications of item response theory (IRT) in measurement have been 

increased considerably, because of its utility in item and scale analysis, scale scoring, and adaptive 
testing. IRT is a model-based measurement in which trait level estimates depend on both persons’ 
responses and the properties of the questions that were administered [3]. 

Item response theory (IRT) methods seek to model the way in which latent psychological 
constructs manifest themselves in terms of observable item responses; this information is useful 
when developing and evaluating tests, as well as estimating examinees’ scores on the latent 
characteristics in question [2].  

 
3. Item Characteristic Curve 

 
Item characteristic curve is the basic building block of IRT, on which all other constructs 

depend. It has three technical properties to describe it. Difficulty describes where the item functions 
along the ability scale. It is perhaps a location index. Discrimination describes how well an item 
can differentiate between examinees having abilities below and above the item location. This 
property essentially reflects the steepness of the curve in its middle section. The steeper the curve, 
the better the item can discriminate. The third property is guessing factor that shows the probability 
by which an examinee can get items correctly by chance. Thus the probability of correct response 
includes a small component that is due to guessing [5]. 

Using these three descriptors, one can describe the general form of the item characteristic 
curve. These descriptors are also used to discuss the technical properties of an item. It should be 
noted that these properties say nothing whether the item really measures some facets of the 
underlying ability or not; that is a question of validity. 

There are three basic mathematical models for item characteristic curve to show the relation of 
the probability of correct response to ability. Each model employs one or more parameters whose 
numerical values define a particular item characteristic curve. These models are logistic models, 
Rash or one parameter models and three parameter models [5]. Such mathematical models are 
needed if one is to develop a measurement theory that can be rigorously defined and is amenable to 
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further growth. In addition, these models and their parameters provide a vehicle for communicating 
information about an item’s technical properties. Equation for the three-parameter item 
characteristic curve model is as follows [5]: 

)1(
1

1
)1()(

)( bae
ccP −−+

−+= θθ  

where 
      b is the difficulty parameter, 
      a is the discrimination parameter, 
      c is the guessing parameter, 
     θ  is the ability level. 

    )(θP  shows the probability of correct response at ability level θ . The value of c does not vary as 

a function of the ability level. Thus the lowest and the highest ability examinees have the same 
probability of getting the item correct by guessing. In practice the range of ability levels vary from 
-3 to +3, the discrimination is between -2.8 and 2.8, and values above 0.35 are not considered 
acceptable for parameter c [5]. 

 
4. Estimating Parameters of a Curve  

 
Since the actual values of the parameters of the items in a test are unknown, one of the tasks 

performed when a test is analyzed under IRT, is to estimate these parameters. The obtained item 
parameters estimates then provide necessary information for the technical properties of test items. 
It is wroth mentioning that under Item Response Theory, item parameters are independent of the 
distribution of examinees over the ability scale. From a practical point of view, it means that the 
parameters of the total item characteristic curve can be estimated from any segment of the curve. 

In a typical test, a sample of M examinees responds to the N items in the test. The ability scores 
of these examinees will be distributed over a range of ability levels on the ability scale. These 
examinees will be divided into J groups along the scale so that all the examinees within a given 

group can have the same ability level jθ , and there will be jm  examinees within group j, where 

j=1, 2, 3… J. Within a particular ability level of jθ , the observed proportion of correct response 

is
j

j
j m

r
p =)(θ , which is an estimate of the probability of correct response at that ability level [5]. 

 

4.1. Application of Maximum likelihood Estimation  

In order to find the item characteristic curve that best fits the observed proportion of correct 
response; we should first select a model for the curve to be fitted. The procedure used to fit the 
curve is based upon Maximum likelihood Estimation [5]. 

MLE endeavors to find the most "likely" values of distribution parameters for a set of data by 
maximizing the value of what is called the "likelihood function"[6]. Under this approach, initial 
values for the item parameters, are established a-prior. Then using these estimates, the value of 

)( jp θ  is computed at curve model. The agreement of the observed value of )( jp θ  and the 

computed value is determined across all ability groups. Then adjustments to the estimated item 
parameters are found that results in better agreement. The process of adjusting is continued until 
the adjustments get so small that little improvement is possible. At this point, the estimation 
procedure is terminated. 

Although the actual MLE procedure is rather complex mathematically and entails very 
laborious computations that must be performed for every item in a test. In what follows after 
introducing the chi-square goodness of fit index, we try to find the optimum values of item 
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parameters using three different techniques of optimization based on minimizing the goodness of 
fit index.  

4.1.1 Chi-Square Goodness of Fit Index of an Item  

The agreement of the observed proportion of correct response to those yielded by the fitted 
curve is measured by the chi-square goodness of fit index. The chi-square test is used to test 
whether or not a sample of data came from a population with a specific distribution [7]. It is proven 

that if data is binned, and uncertainties are Gaussian, then 2χ  test is equivalent to MLE [8]. 

For our purpose chi-square goodness of fit index is defined as follows [5]: 
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where 
 J  is the number of ability groups, 

jθ  is the ability level of group j, 

jm  is the number of examinees having ability jθ ,      

)( jθρ  is the observed proportion of correct response for group j, 

)( jP θ is the computed probability of correct response for group j,  

If the value of the obtained index is greater than a criterion value, the item characteristic curve 
specified by the value of the item parameter estimates is said not to fit the data. The criterion value 
for the goodness of fit depends on two factors: degree of freedom and percentile points of rejecting 
the null hypotheses.  

 

4.2 Gradient Descent Technique 

After formulating an objective or energy function )( fE  and setting the optimality criteria, the 

simplest way of founding minimum energy or the optimum values for parameters (a, b and c) is to 
perform gradient descent. Start with an initial configuration; iterates with  

)3()( )()()1( ttt fEff ∇−=+ µ  

where 
0>µ is a step size and )( fE∇ is the gradient of the energy function. 

until the gradient converges to a point *f  for which 0)( * =∇ fE . Considering 2)( χ=fE  for our 

case, the gradient to minimize chi-square is composed of the following components 
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At the end of each iteration loop, we update parameter values with the following formulas. 
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A different step size is chosen for updating each parameter, and we would decrease their values 
as reaching a local minimum to slow down the search. 

  

4.3 Simulated Annealing Technique 

Simulated annealing is an optimization method that derived from statistical mechanics. 
Annealing is the physical process of heating up a solid and then cooling it down slowly until it 
crystallizes. As the temperature is reduced, the atomic energies decrease. A crystal with regular 
structure is obtained at the state where the system has minimum energy [10]. 

The algorithm consists of a sequence of iterations. Each iteration consists of a randomly change 
in the current solution to create a new solution in the neighborhood of the current. The change in 
the cost function is computed to decide whether the newly produced solution can be accepted as the 
current solution or not. If the change is negative, the solution is accepted. Otherwise, it is accepted 
according to Metropolis's criterion based on boltzman's probability [10].  

The following are the characteristics applied for finding the optimum values of item 
parameters:  solutions are composed of three parameters a, b and c initialized in proper ranges. 
Evaluation is based on the chi-square goodness of fit index and a cooling schedule. 

In designing the cooling schedule, four parameters must be specified. These are as follows: an 
initial temperature 1000, the geometric cooling rule as the temperature update rule by the following 
formula: 

)8(,...2,1,01 ==+ icTT ii  

where c is a temperature factor which is a constant smaller than 1. In our simulation c is 0.25, 
number of iterations to be performed at each temperature step is 20 and stopping criterion for the 
search is convergence of achieved optimum solutions. 

   

4.4 Genetic Algorithm Optimization Technique 

The evolution of a population of individuals is what a genetic algorithm does. GAs operate on a 
population of potential solutions applying the principle of survival of the fittest to produce 
(hopefully) better and better approximations to a solution [8]. 

Chromosomes are the way of coding the solutions composed of genes (characters). For our 
case the chromosomes are composed of three genes a, b and c parameters respectively. The valid 
range of each parameter is specified a prior. For the population representation, real coding of 
values is selected and the population size is set to 20. Having decided the chromosome 
representation into the decision variable domain, it is possible to assess the performance or fitness 
of individual members of a population. The chi-square goodness of fit index is chosen as the 
objective function to characterize an individual performance. The selection procedure is stochastic 
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universal sampling with discrete recombination crossover of rate 1 and real mutation with the rate 
of 0.05 as genetic operators. Other technical parameters are as follows: generation gap of 0.8, max 
number of generations 1200, insertion rate of 0.9.  

We used a multiple population approach, the use of which has shown, in most cases, to 
improve the quality of results obtained using single population GAs [9]. In a multiple population 
GA, each subpopulation is evolved over generations by a traditional GA and from time to time 
individuals migrate from one subpopulation to another. The amount of migration and patterns of 
migration determines how much genetic diversity can occur. The technical parameters of applied 
multiple-population GA is as follows: number of subpopulations 8, migration rate 0.2, number of 
genes/migration 20 and number of individuals /subpopulation is 20.  

As the fitness of a population may remain static for a number of generations before the superior 
individual is found. A common practice is to terminate algorithm after a pre-specified number of 
generations and then test the quality of the best members [9]. If no acceptable solutions are found, 
the GA may be restarted or a fresh search initiated. 

   
5. Experimental Results and Conclusions 

 
The algorithms were tested within two distinct phases. In the initial phase, a data set of ten 

different ability levels was used to estimate the parameter values. For each ability level, a group of 
ten answers generated by students was used, and the probability of correct response for the related 
ability level was computed. Examinees' test responses (0/1s) were generated as follows: the 
program reads in a file of calibrated item parameters and generates normally distributed random 
variables to represent examinees' ability levels. The probability of an examinee obtaining a correct 
response is calculated and then this probability is compared with a uniform random number to 
decide the examinee's item response. If the probability is larger than the random number, the 
examinees are credited a correct response (i.e. an item score of 1), otherwise, a zero. The generated 
examinees' answers were then used to calculate the observed probability of correct response, )( jθρ . 

In this phase, algorithms were tested with more than 1000 different data sets. Here is the result 
of running these three proposed methods on sample input data sets: 

 
Table 1 – chi-square for the first data set 

Data sets Method 
1 2 3 4 5 

GD 11.757 15.1298 7.9996 22.090 8.6896 
SA 11.701 0.0002 5.5802 4.4643 7.8414 

MPGA 11.665 0.0001 4.8655 4.4643 7.6530 
 

Table 2 – chi-square for the second data set 
Data sets Method 

1 2 3 4 5 
GD 10.614 24.765 17.031 7.9995 8.6896 
SA 6.6328 4.4644 10.4268 4.0932 3.6767 

MPGA 6.6328 4.4643 10.4268 4.0719 3.6767 
 

Table 3 – chi-square for the third data set 
Data sets Method 

1 2 3 4 5 6 
GD 57.38 9.863 9.116 14.87 7.999 13.98 
SA 5.185 9.913 9.563 6.530 5.799 10.86 

MPGA 4.622 9.8606 8.3686 6.526 5.3372 10.53 
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Fig 1- Results of Running MPGA, SA and GD on the Sample Data Sets 

 

According to the tables and diagrams, genetic algorithm and gradient descent show the best and 
the worst results on the generated data sets respectively, and simulated annealing is placed in the 
middle. In a gradient descent algorithm, if energy function is convex, convergence is guaranteed by 
the algorithm. When it is not the case, as it is probably true with our problem, the algorithm gives 
only a local minimum. Recalculation of )( fE∇  for new types of ICCs, is another drawback of 

using Gradient Descent. Therefore for the second phase, we only examined the other remaining 
methods. 

In the second phase, a data set of five different ability levels (weak, average, good, very good, 
excellent) from a group of 270 students of different primary schools in Tehran whom ability levels 
are known a-prior, were selected. The collected data (students' answers) was used for estimation of 
item parameters of 60 multiplication questions. Table 4 shows the results. 

 
Table 4 – Comparison of SA and MPGA  

Method Average  
Chi-Sqr 

Standard 
Derivation 

Best Fit Worst Fit Fit-Rate  

SA 3.962524 3.450872 0.1319 17.5905 0.822581 

MPGA 2.806771 2.030203 0.0773 9.8126 0.951613 

 

In this table, best (worst) fit is the minimum (maximum) value of the calculated chi-squares 
within the sample data set which belongs to the best (worst) fitted curves. Fit-Rate shows the 
percentage of fit within the sample. Data is said to be fitted by the curve if its chi-square value is 
less than or equal to the number of clusters.  

As the results show GA finds a better optimum parameter values than what a simulated 
annealing does. So, Multiple-Population Genetic Algorithm (MPGA) is proposed as a solution to 
estimate parameters of an item. It is wroth mentioning that since GA is not proper for online (real-
time) operations, in case that it is unavoidable for finding the optimum parameter values, one 
should pay the trade offs and use a quicker method. 
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