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Abstract 

 
Functionality of Master/Checker (M/C) mode is based on the redundancy of the 

processors supported by most modern processors. This paper presents an experimental 
evaluation of the M/C mode in a 32-bit Pentium processor system using power-supply 
disturbance (PSD). The results of PSD show that the M/C mode has only 67.13% error 
detection coverage. The low coverage is caused by the crashes in the Master processor as the 
result of voltage fluctuations. Use of a watchdog timer may raise the coverage up to 99.73%. 
Moreover, the correctness of the results produced by the Master processor has been checked. 
In many cases, the results were correct while the Checker processor announces an error. 

 
Keywords:  Master/Checker Mode, Fault Injection, Experimental Evaluation, Watchdog 
Processor. 
 
1. Introduction 
 

In design of dependable microprocessor based systems, using hardware redundancy has 
always been a safe solution. Hardware redundancy is widely used in embedded, industrial, and 
real-time systems, here reliability [1], safety, security [2] and availability [1], [3] are of 
important concerns. Hardware redundancy can be used in deferent levels such as system level, 
chip level, or inside the chip. Redundancy in system level, despite its high reliability, is 
expensive due to system repetition. Redundancy inside the processor needs ASIC design. 
Fortunately, redundancy over chips and particularly processors is reasonably reliable and cost-
effective. In general, two or more concurrent processors synchronously execute a single 
application, and an external comparator compares their outputs. In case of mismatch 
appearance, the comparator announces an error [4], [5].  

In the last decade, the growth in computer architecture complexity and subsequently bus 
complexity, higher working frequency and higher number of processor pins, made 
manufacturing comparators very difficult, if not impossible. Therefore, the designers migrated 
from designing external comparators to the comparators inside the processor. The M/C mode 
allows the comparators to be used inside the processors. The M/C mode is supported in many 
modern processors such as Pentium Family [6], AMD K5  [7], MIPS R4000 [8]. 
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In M/C mode, two processors synchronously execute a single program. One processor is 
in Master mode, and the other one in Checker mode. In the case of mismatch appearance in 
output pins, Checker announces an error. M/C mode is expandable to more than one Checker.  

This paper discusses experimental evaluation of error detection coverage in the M/C mode. 
The processor used in these experiments, is a 32-bit Pentium processor. To evaluate the 
M/C, the PSD fault injector is used and 3000 experiments are performed.  

M/C mode in Pentium processor has been discussed in the section 2 and will be followed 
by a thorough description of experimental system and its components in section 3. Section 4 
presents the design of the fault injector. Afterward the results of the experiments are 
explained, and finally a conclusion is presented. 

 
2. M/C mode 
 

The M/C mode functionality is based on the duplication of processors. Both processors 
run the same program and process the same data stream, fully clock synchronous. In the Intel 
Pentium family, such a duplication structure can be set without external components, as the 
necessary logic is integrated inside the chip and is called Functional Redundancy Checking 
(FRC). Two processors are required to support FRC. The processor configured as the Master, 
operates according to the bus protocols. The outputs of the Checker are tri-stated (except few 
pins) so the outputs of the Master can be sampled. If the sampled value differs from the value 
computed internally by the Checker, the Checker asserts an output pin (IERR#) to indicate an 
error.  

 
3. Experimental system 
 

The architecture of the experimental system consists of five main parts as are shown in 
figure 1:  
1) a Pentium M/C board, 2) a watchdog processor (WDP), 3) fault injector, 4) an interface 

logic and 5) a Host computer.  
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Figure 1 - Organization of the Experimental System 
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3.1 M/C board 
 

The M/C board was equipped with two 100 MHz Intel Pentium® processors. The 
Pentium® processor was selected because of the following three reasons:  
1) The processor supports M/C mode. Note that M/C mode is functionally equivalent to the 
features of the next generation of Pentium processor family, 2) the implementation is simple 
and 3) the results can be obtained and evaluated reasonably fast. Notice that a custom board is 
developed to make processor pins accessible. 
 
3.2 FPGA Board 
 

The WDP, the Fault activator logic and the Interface logic were integrated in a board, 
called FPGA board equipped with an Altera Flex10k30 FPGA.  

The WDP decodes the processor cycles for validity of Checker processor error signal. In 
addition, a workload timer (WL-timer) was implemented in the WDP. The WL-timer sets an 
upper limit for workload execution time. At the beginning of the workload, a few commands 
will be added to set the WL-timer initial values. With every clock pulse, WL-timer value 
decreases one unit. At the end of the workload, a signal stops the WL-timer. If the WL-timer 
reaches zero before the end of the workload, an error will be sent to Manager Program running 
in the Host computer. 

The Fault activator gets a command from the Manager Program and activates the PSD 
fault injector circuit. 

The Interface logic establishes communication between the Host computer and the 
WDP as well as the Fault activator. It is used for boards with different frequencies. It receives 
signals from Manager Program and sends them to the boards from one side, and from the other 
side, it reports the system condition to the Manager Program. It contains buffers to store data 
and results temporarily. 

 
3.3 Host Computer 
 

The task of the Host computer is to manage and control the whole experiment. For 
each fault, the Host computer performs several operations in the following order:  

1) Resetting the Pentium processors and all registers of the WDP. 
2) Waiting for the start of workload program execution. 
3) Determining a random time for fault injection.  
4) Issuing the command for fault injection.  
5) Reading coverage information from the WDP.  
6) Analyzing raw data. 

The information is stored in a Microsoft Access bank, which will be analyzed at the end 
of the experiments. This is done by the Manager Program in the Host computer.  
 
4. Fault Injection Method 
 

In this experiment, power-supply disturbance (PSD) fault injection method is used. The 
Manager Program controls a PSD circuit through the fault activator to inject faults into the 
Master processor. The PSD fault injection occurs with voltage drop in power supply for a few 
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milliseconds (Figure 2). In these experiments, when Pentium power voltage drops to 2.5 V 
no severe problems occur, however every time the Pentium power voltage drops under 2.5 V 
the processor does not work properly. Note that if the voltage drops to 2.2 V the crash 
probability increases dramatically, and at 2 V it crashes almost all the time.  

 

3.4 V

2.5 V

2.2 V

10 usec

0.3 v0.2 v

 
------  Stress Threshold 
   PSD Fault Voltage Drop 

Figure 2 – PSD Fault Characteristic 
 

Modern processors work with very high frequency. Therefore, the desired current should 
be applied in a short interval. Hence, the bulk storage capacitors with a low ESR (Effective 
Series Resistance) are required. In order to reduce the ESR, it may be necessary to place 
several bulk storage capacitors in parallel. These capacitors should be placed near the Pentium 
processor on the power plane(s) to ensure that the supply voltage stays within specified limits 
during changes in the supply current during operation.  

It is very difficult to design a PSD fault injector circuit for modern processors with bulk 
storage capacitors around its power supply pins.  
Assume the substitute capacitor of Pentium processor is C, then Q of the capacitor will be 
C×V or in other words C×3.5, and fault injector circuit should flush part of the charge quickly. 
As until the Pentium power supply voltage is above 2.5 V, processor operates normally, 
therefore the fault injector circuit should at least drop the voltage to 2.5 V and the circuit 
should flush C× (3.5-2.5) = C×1 during the injection time. According to this approximation, if 
the flushed current is assumed constant, it can be concluded that: (T is the duration of fault 
injection) 
Q = C × V = I × T  ⇒  I = C × V / T  

Assume the clock frequency inside the Pentium processor is 100 MHz, the fault 
injection duration is half a clock (0.05 nsec) and capacitor is 1µF, then for 1V drop in 
processor power supply voltage the following current should be tolerated. 
Duration T = 0.05 nsec  ⇒  I = C × V / T = 1µF × 1V / 0.05 nsec = 20,000 A = 20 KA! 

This calculation implies that, only high-energy pulses in power supply can produce a 
fault in Pentium processor. In other words, any attack from fast pulses of the power supply 
will not make fault in the processor, unless pulses have huge duration. For instance, if pulse 
duration was several thousand cycles, it is possible to drop the voltage, and produce a fault. 
However if fault occurs in the processor in many cycles, then the crash can be simply 
predicted. Therefore, transition pulses in power supply take the processor in one of the two 
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following conditions: either the system continues normally or, it crashes. In other words, based 
on the experiments, there may be no middle condition.  
 
5. Experiment Results 
 

The main attention is on M/C mode, which has been tested with PSD fault injection 
method. A quick sort (Qsort) program is used as the workload. Another program verifies the 
correctness of the Qsort and sends the result to the Manager Program at the end of the 
workload. This is used as the reasonableness checking mechanism to check M/C results. The 
results are based on 3000 faults. 

 
5.1. Evaluation of M/C Mode  
 
 This section presents the experimental results on error detection coverage of the Checker 
processor in the result of PSD fault injection in the Master processor. Results of the error 
detection coverage are shown in Table 1.  
 

Table 1 – Error Detection Coverage of M/C mode  
 PSD 
Number of tests 3000 
Number of errors detected by Checker processor 1984(66.13%)

 
According to the results, the M/C mode is not effective (66.13%) with PSD fault 

injection method. In this method processor power supply disconnects for a while. At this time, 
processor, as a huge sequential circuit with certain predefined states, changes states. Since the 
predefined states are less than undefined states in the huge sequential circuit, with high 
probability the new state is not a predefined state, therefore the processor crashes with high 
probability. To make the results confident and detect the crash state, a WL-Timer has been 
implemented. This timer checks an upper bound for the workload execution time in a way that 
it only detects faults at the crash time. As shown in Table 2, considering the small intersection 
between Checker and WL-Timer as the result of PSD fault injection, and the fact that WL-
Timer does not announce any fault except at the crash time, the ineffectiveness of the M/C 
mode at hard crash is concluded. In addition, Table 2 shows that combination of the M/C 
mode and the WL-Timer can improve error detection coverage up to 99.73%. 

 
Table 2 – Checker processor Error Detection Coverage   

 PSD 
Number of tests 3000 
Number of errors detected by WL-Timer ( crash states) 1486(49.53%) 
Number of errors detected by Checker and WL-Timer 441(14.7%) 
Number of errors detected by Checker or WL-Timer 2992 (99.73%)

 
5.2 Reasonableness Checking 
 

At the end of Qsort, there is another program to examine the correctness of the results. 
This program sends a Sort-OK message to the Manager Program if the Qsort program sorted 
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array correctly. At this time, the results of the M/C mode and reasonableness checking 
mechanism will be investigated. Fault detection coverage in M/C mode and reasonableness 
checking mechanism (Sort-OK) is shown in table 3.  

 
Table 3 – M/C Mode and Reasonableness Checking Mechanism 

 PSD 
Number of errors detected by Checker processor 1984 
Checker detected and Sort-OK  1505(75.86%) 

 
The M/C mode in 75.86% of the cases announces fault despite Sort-OK. The reasons 

are:  
1- Some faults are overwritten and does not affect the results. 
2- The Checker processor detects some faults mistakenly as the result of voltage drop at 
external bus of the Master processor. 

It is very important that PSD in the Master processor can distort the bus voltage and 
causes the Checker processor to detect a fault mistakenly. Table 4 shows the voltage margin of 
Pentium processor from the manufacturer manual [6]. From the Table 4 it is obvious that as 
the effect of fault injection in PSD if VHigh drops under 2 V, there is a possibility that the 
Checker processor consider it as zero, since it is less than VIH-Min. 

 
Table 4 – Voltage Margin of Pentium Processor 

 VIH-Min VOH-Min VIL-Max VOL-Max 
Pentium processor 2 2.4 0.8 0.4 

 
In such case, the Checker announces one fault caused by voltage fluctuation. The 

Checker fault announcement shows its sensitivity and accuracy on one hand. On the other 
hand, based on the result checking (Sort-OK), no fault has appeared and Pentium processor 
continues its operation without any fault. From this point of view, Checker has detected a 
wrong executive cycle due to voltage drop.  

 
6. Conclusion 
 

The results of the experiments are quite different from that of previous works on the 
subject [9]. There are few notes to pay attention to: 
1. M/C mode is not strong to hard crash. Hard crash occurs in PSD due to change of state in 
M/C to some anonymous undefined states and as the result, faults are not recognizable by the 
Checker. 
2. In PSD, part of recognized faults is because of voltage drop in bus. That is not an actual 
fault since in most cases reasonableness checking mechanism approves the correctness of the 
program execution. 
3. In modern processors, huge capacitors and high frequency make a remarkable difference in 
PSD in comparison to previous generation of the processors. The results illustrate that sudden 
pulses in power supply should contain high energy to generate a fault. In other words, PSD 
faults occur as the result of pulses with long duration. Note that, if duration of fault pulses is 
long, processor is very probable to crash. Therefore, with high probability, pulses in Pentium 
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power supply, take the processor in one of the following two states: Either the system 
continues to work normally, or it crashes. The occurrence of middle states is rare. 
4. The results of this experiment are quite different from the results of the previous 
experiments with PSD. In modern processors, PSD does not necessarily generate control flow 
errors.  
5. It mentioned that the PSD often takes processor to the hard crash. This makes the 
mechanisms based on time-out (e.g. WL-Timer) more important. As the results confirm, WL-
Timer mechanism is capable of increasing fault detection coverage up to 99.73%.  
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