
Hierarchical Global Routing Integrated with Floorplanning and
Placement

Morteza Saheb Zamani and Saeed Kazemi
IT and Computer Engineering Department, Amirkabir University of Technology

Abstract

Physical design tasks are very complex and therefore, are usually decomposed into several
simple subtasks. However, the interdependence between these subtasks and its effect on the
quality of the design is increasingly becoming more obvious. On the other hand, the
increasing complexity of systems prevents the integration of the physical design subtasks.
 This paper presents an integrated approach to the floorplanning, placement and routing
of very large macrocell-based designs. The framework is given a hierarchical specification
and performs the physical design subtasks while preserving the specification hierarchy.
There are some challenging problems in this approach mainly due to the high degree of
interdependence between levels in the specification hierarchy which makes pure 'divide
and conquer' strategies useless. A hierarchical global routing algorithm is also introduced
in this paper.

1. Introduction

With the growing complexity of VLSI systems, the physical design of today's systems has
become very complex. One approach to control overall complexity, which is usual in
designing in higher levels of abstraction, is to divide the design into several levels of
hierarchy. This produces poor results if the interaction between modules at different levels
of hierarchy is not considered.
Additional complexity has recently been introduced by the deep submicron technology due
to the large impact of physical parameters on the quality of the final design. This usually
leads to many iterations between the processes over various levels of abstraction (e.g. high-
level synthesis and physical design). The cost of iterating between these processes can be
very high in practice if the layout result cannot provide helpful information to the higher
level synthesis process. One effective way to provide bilateral information between these
various design processes is to use a common specification hierarchy. This can facilitate
incremental modification of the design while avoiding inconvergence in the design
process.
However, the high degree of interdependence between levels in the specification hierarchy
may result in poor layout if pure top-down or pure bottom-up algorithms are exploited. In
the former approach, even though a good global interconnection view is available at the
top of hierarchy, there is no information about module sizes/shapes since the placement

Archive of SID

www.SID.ir

www.SID.ir

and routing internal to the modules has yet to be determined. On the other hand, algorithms
starting from the leaf cells have the advantage of using accurate size, shape and pin
position information about the modules but since they are unable to use the connectivity
information of modules at the upper hierarchy levels, an optimal placement at one
hierarchy level is unlikely to be optimal with respect to the higher levels.
The algorithm presented in this paper utilizes the advantages of the top-down and bottom-
up strategies by quickly traversing the specification hierarchy in three passes to perform
floorplanning, placement and routing.
In this approach, the algorithm first gathers appropriate information about the module
sizes, pin positions and connection paths before attempting the actual placement and
routing. The algorithm considers the effect of the hierarchy levels on each other as well as
routing information during floorplanning.

2. Prior Works

There has been a large amount of research in the field of single-level floorplanning over
the past decades [1] [2] [3] [4] [5] [6]. However, multi-level hierarchical floorplanning and
routing of macrocell designs and the inter-dependence among the hierarchy levels have not
been studied closely. One of the main reasons why this problem has not been addressed is
that macrocell-based designs have not had many modules until recently and the difficulty
in handling inter-level dependencies might have hindered CAD designers to adopt this
strategy.
However, in the recent years, due to several reasons, including growing complexity of
designs and the need for design reuse, the number of macrocells in a design is becoming
very large. Therefore, physical design tools have to handle very complex designs with
many hard macros [7].
However, there are few approaches which attempt to perform floorplanning hierarchically.
 [8], [9] and [10] enumerate all possible topologies of every cell at each hierarchy level and
then select those that best satisfy the objective function for placement and routing within a
module incorporating the cells. Dai and Kuh's algorithm [10] tries all possible templates in
a top-down process to find the best topology according to a desired chip aspect ratio and
I/O pad positions. However, since this approach fails to take module shapes into account at
the higher hierarchy levels, it does not work well for chips containing cells with fixed
geometries and it may need considerable backtracking to effectively search the solution
space. Eschermann et al [8] propose an improvement on this approach which passes shape
estimation information up the hierarchy levels from the bottom. This information is then
utilized by a process operating top-down, to evaluate the various topological possibilities
(TPs). This bottom-up process largely constrains the search space since it only computes
the shape of one configuration at each level, by considering such measures as area and
shape, and does not carry enough information about the shapes of the modules from the
bottom levels. Pedram and Preas [9] propagate accurate information by enumerating all
TPs in a bottom-up traversal and labeling each module with its shape function (the function
which gives the possible dimensions a module can have). Some other techniques, such as
 [11] and [12] also use shape functions to pass size information to upper levels of the
hierarchy.
These approaches are limited by the number of modules at each level, as well as the
number of hierarchy levels, able to be considered, due to the fact that the number of TPs
grows exponentially with the number of modules. For example, a five-module cell may
have more than 300,000 different TPs [8].

Archive of SID

www.SID.ir

www.SID.ir

This paper presents a fast algorithm which is capable of floorplanning followed by
placement and routing of very large hierarchical designs. It considers the effects of the
hierarchy levels on each other and takes routing into account during the floorplanning
process. A global routing strategy is also presented in this paper.

3. Floorplanning and Placement

Our system is given a design hierarchy consisting of many levels, at each of which the
modules' netlists are specified. The size and pin positions of all leaf cells in the design are
assumed to be fixed. The position of I/O ports in the upper most level may be given as
constraints or left unspecified. In the latter case, the algorithm will attempt to place them
optimally. The objective of the algorithm is to find the positions and orientations of the leaf
modules, as well as the shapes and pin positions of the parent modules, while preserving
the specified hierarchy, in such a way that the combined area and signal path length of the
circuit is minimized.
The algorithm consists of four recursive processes. In the first traversal, the size and shape
of each module within each hierarchy level is regarded as equal because at the top level of
the specification hierarchy there is no information on the geometry of the modules. It
performs an initial placement of modules at each level based on the I/O port positions and
the internal and external connectivities of the module at that level. This is followed by the
assignment of I/O ports on each placed module's boundary, in an attempt to optimally route
all interconnections at the parent module level. The process now recurs for each of the
placed modules. This top-down process produces an initial floorplan containing the global
connection paths for all modules in the design, which are locally optimum.Based on this
information, a bottom-up process may be performed to produce an estimation of the
module sizes, successively, at every level in the specification hierarchy. This is followed
by another top-down process which gives a more accurate global view of connections, by
using the more realistic module size information calculated in the previous pass. The next
bottom-up process then uses the information gathered in the previous passes to perform the
actual placement and routing. In the following, each process is explained in detail.
 3.1 Initial floorplanning: This step is to find optimal port positions for each module to
obtain interconnection paths throughout the design. To do this, it is necessary to determine
the relative positions of modules within each parent module. Since module size
information is unavailable initially, all modules at each hierarchy level are assumed to have
equal size (or sizes based on a rough estimation).
In this stage, we consider modules to be circles, since there is no information available on
size and shape. Based on fixed module sizes and port configurations (at a given hierarchy
level), it is possible to find the optimal position of each submodule's ports through which
connections are made to other submodules (at this level) and to the parent module.
Representing a module as a circle also avoids the need to fix pins to one of the four sides
of a rectangle at an early stage. The simplicity of the algorithm for finding an approximate
placement of modules, guided by locally optimum wiring, is another reason for
representing modules as circles, in this stage.
Using the circle representation, the task of finding the relative positions of modules at each
level can be viewed as an optimization problem with an objective function which
maximizes the sizes of submodule circles within a parent module circle, where each
module has a known size and port configuration, in such a way that the total connection
length within each hierarchy level is minimized. This problem may be solved by using

Archive of SID

www.SID.ir

www.SID.ir

classic optimization techniques with a composite objective function [13]. However, a
heuristic method, explained in section 3.5, is used in our system to speed up processing.

Figure 1: Connection path produced by initial floorplanning.

The first top-down process starts at the root module of the specified hierarchy, where port
positions on the boundary correspond to desired I/O pad positions. After placing all
submodules and calculating their maximum allowed size relative to the parent module,
optimal port positions, for each module of this parent, are determined by connecting the
centers of the corresponding circles. This procedure is applied recursively to each set of
modules at each hierarchy level, until the leaf modules are determined. Routing paths can
now be determined at each hierarchy level, as pin position information is passed from the
top to the lower levels of the design. Figure 1 shows the result of the process for a 4-level
hierarchy.
 3.2 Size estimation and propagation: From the leaf modules, accurate information
about sizes is available. The first bottom-up traversal attempts to propagate size
information to the upper levels of the tree. Each module is modeled by its minimum
enclosing circle, where the area of the circle is the minimum space required for a module
without having to fix its orientation at this early stage.
Starting from the leaves, the size of each parent module is estimated based on the relative
positions of its submodules. These are calculated from the placed circles (modules), having
fixed the external port positions dictated by the interconnection paths obtained during the
initial floorplanning process. These port positions are described in terms of the angles at
which the wires connect to the module, and are, therefore, independent of the module's
size. These are used, in turn, to find an optimal placement of submodules inside each
parent module.
The placement procedure in this traversal is similar to the one used in the floorplanning
process, but with unequal bounding circle sizes and a scaling postprocess which uses real
submodule sizes (see Section 3.5 for details). The size of each parent module is then
determined as the minimum circle enclosing all its submodule circles. By applying this
procedure recursively in traversing back up the specification hierarchy, the sizes of all
parent modules in the design are estimated.
 3.3 Floorplanning improvement: The information obtained during the floorplanning
process is rather inaccurate due to the unavailability of module size information. With
estimated sizes available after the first bottom-up traversal, a process similar to initial
floorplanning is carried out with more realistic module sizes to obtain more accurate
interconnection path estimates.

Figure 2: Setting block orientations

3.4 final Placement: At this stage, where information about the wiring paths, port
positions, and module sizes are available, the final placement is performed using
rectangular blocks. The algorithm for determining the relative placement of circles is based

Archive of SID

www.SID.ir

www.SID.ir

on the last calculated pin positions. The rectangular blocks are then mapped into their
corresponding circles. The mapping also involves determining the best orientation
(reflection and 90º,180º, and 270º rotations) of the blocks, determined by enumerating the
eight possible ways of positioning each block inside its corresponding circle and choosing
the orientation which results in minimum length routing, when the actual ports of the
blocks are connected to the port positions around their enclosing circles (Figure 2). In this
way, the block orientations can be found in linear time with respect to the number of
modules at each level. Then, in order to improve the placement we use a method based on
simulated annealing [14], with a restricted move set and low starting temperature which
preserves the relative placement and results in fast compaction.
The routing for this module can now be determined (see section 4). The minimum
bounding circle of each compacted rectangular module has now been determined for the
parent hierarchy level, and the procedure (placement and routing) is recursively applied
(upward) until the final layout of all modules is determined.

3.5 Placement Algorithm for One Level of Hierarchy: The heuristic used here to
determine the optimal placement of circles is based on the force-directed method [15]. The
algorithm first finds the positions of module centers by considering each connection as an
attractive force.

Figure 3: Pin assignment for external nets based on closest point on the boundary.

4. Routing

In the final bottom-up traversal, each module is routed before the placement of the upper-
level modules is performed. For the global routing of each module, the routing space is
divided into maximal horizontal rectangles (vacant tiles). Then, a routing graph is
constructed whose vertices and edges correspond to the vacant tiles and their
neighborhoods, respectively. The edge weights are assigned according to the available
space (regarding the initial space and routing congestion). A shortest path algorithm [16] is
used for the global routing of modules at each hierarchy level.
There are several problems in a hierarchical environment as follows:

a) External nets: In addition to the internal nets inside a module, there are many external
ones whose pin positions have not been fixed yet. Three strategies were tried. The position
of a pin (method A) for an external net can be set to the point on the boundary which is
closest to the other terminal(s) of this net (Figure 3).

Figure 4: Use of gathered information from previous traversals in assigning external nets exit points.

Archive of SID

www.SID.ir

www.SID.ir

Another method (method B) is to use the pin position information gathered during the
previous traversals of the hierarchy. This method should be more effective since it uses
more global information about the interconnection structure of the whole design (Figure 4).

Figure 5: Routing of external nets can be postponed until their pin position are found.

The third method which is even more effective is to postpone the routing of the external
nets until the position of all other terminals to which they are connected are known during
the placement and routing of other modules in the hierarchy. In this way, the routing of
such nets may be performed at the higher levels of hierarchy when their parent (or
predecessors) are being routed. These pins may then be located somewhere inside the
higher-level modules (Figure 5). This prevents wires to be unnecessarily routed around
some modules. The experimental results in Section 5 shows the effectiveness of each
strategy.

Figure 6: Extended routing graph

b) Routing through modules: When the algorithm is routing a module at a hierarchy
level, a net may unnecessarily be routed around some blocking module(s) if all the
modules are considered as rigid. However, there are sometimes some space available
inside the modules and therefore, can be used for routing. We use this space by including
the routing graph of the blocking module into the routing graph of the current hierarchy
level (Figure 6).

c) Routing area estimation: Accurate estimation of routing area during placement is
crucial. Two kinds of approaches were attempted in this work, namely static and dynamic
estimation.
 Static estimation: routing space can be estimated on a preprocessing step before
placement. In this method, routing space is estimated and added to block dimensions and
then SA is applied to these new blocks.
 Dynamic estimation: Routing space can be calculated during the placement. In this
method, routing space for each block is calculated at each iteration of SA algorithm, based
on current placement of modules.
For static estimation, two methods were tried in our framework. BEAR-FP[8] adds routing
area on each side of a module proportional to the number of ports on that side.
CHAMP[17], on the other hand, finds all module sides coinciding the minimum bounding

Archive of SID

www.SID.ir

www.SID.ir

box of each net and distributes routing space for that net among such module sides. This
can be done as a preprocessing step (static) or calculated at each iteration (dynamic).
Murata et al. [18] calculates routing space for a parent module based on the position of nets
within it. Therefore, the routing space depends on the current placement of submodules
and, therefore, is estimated dynamically.

5 Experimental results

Since there are no hierarchically specified benchmarks for floorplanning, placement and
routing, three MCNC benchmarks, i.e. ami33, ami49 and primary1[19] were partitioned
using the partitioner introduced in [10]. In addition, we produced a large benchmark
containing 10,000 modules (sample10000) and 24,435 nets generated by gnl-1.1 [20].
In order to compare our results with other works, we applied the algorithm in [9] to the
hierarchical designs. Table 1 shows that our approach is both faster and more effective in
terms of area and total connection length.

Table1: Comparison with BEAR-FP
BEAR-FP Our framework Bench-

mark Area
(mm2)

Net
length

Area
(mm2)

Net length Time
improve-
ment

Ami33 1.67 66902 1.68 66982 90%
Ami49 43.1 809376 44.19 1,075,551 200%

Primary1 Did not finish 37.66 2,538300

Table 2 shows the reduction in total connection length of external nets. As the results
show, using routing information gathered in the three hierarchy traversals can reduce
routing length by up to 10%. Table 2 also shows that deferring pin assignment for external
nets until the positions of their terminals are determined, can improve results further,
especially for large designs.
Routing through the modules at the lower levels of hierarchy (Figure 6) were also
embedded into the framework. Table 3 shows that this can improve the routing length of
external nets with acceptable process speed reduction (the experiments were done on a
system with a 850 MHz AMD Duron and 256MB RAM).
To compare the effectiveness of the different approaches for routing area estimation in our
hierarchical framework, we embedded two static (BEAR-FP and CHAMP) as well as two
dynamic (dynamic CHAMP and Murata) methods into the algorithm. Table 4 shows the
improvement in terms of total area and total connection length of each example after
successful global routing compared with BEAR-FP. The table shows that dynamic
methods give better results. This is achieved at the expense of small running time (<15%).

Table 2 – External nets length improvement of
methods B and C compared with method A
regarding external net routing

Table 3 – Improvement by routing through modules

Routing strategy

Benchmark B C

Ami33 6.72% 6.82%

Ami49 6.68% 6.97%

Primary1 7.53% 9.42%

Sample 8.28% 10.03%

Benchmark
External net
length
improvment

Time(sec)
without

feedthroughs

Time(sec)
With

feedthroughs
Ami33 9.35% 2 3

Ami49 9.79% 5 7

Primary1 12.64% 58 82

sample10000 18.16% 520 890

Archive of SID

www.SID.ir

www.SID.ir

Table 4- Area and total routing length improvement with respect to BEAR-FP method.
Static CHAMP Dynamic CHAMP Murata Benchmark

area Net length area Net length area Net length
Ami33 -2.92% +0.08% +2.24% +1.68% -2.19% -2.59%

Ami49 -2.05% -1.43% -1.48% -0.05% -0.09 -1.31%

Primary1 -1.24% -1.82 +5.56% +3.80% +5.17% +2.97%

sample10000 -3.78% -4.45% +7.59% +7.18% +9.02% +9.83%

6 Conclusion

In this paper, a hierarchical approach to the physical design of large macrocell-based
designs was proposed. Floorplanning, placement and routing processes, which are
normally performed in separate consecutive phases (due to the complexity of these
processes), are integrated in our framework. Specification hierarchy can be preserved
in this framework in order to facilitate and speed up the design cycle.

References

[1] N. Sherwani, Algorithms for VLSI Physical Design Automation, 2nd ed., Kluwer Academic Publishers, 1999.
[2] A. Kahng, “Classical floorplanning harmful,” Proc. Of IEEE Intl Symp. Physical Design, 2000, pp. 207-213.
[3] P. Chen, and E. S. Kuh, “Floorplan sizing by linear programming approximation,” Proc. Of IEEE Intl Design

Automation Conf. , 2000, pp. 467-471.
[4] X. Tang, and D. F. Wong, “Floorplanning with alignment and performance constraints,” Proc. Of IEEE Intl Design

Automation Conf. , 2002, pp. 848-853.
[5] Y. Feng, D. Mehta, and H. Yang, “Constrained “modern” floorplanning,” Proc. Of IEEE Intl Symp. Physical

Design, 2003, pp. 128-135.
[6] Y. Ma, X. Hong, S. Dong, S. Chen, Y. Cai, C.-K. Cheng, and J. Gu, “An integrated floorplanning with an efficient

buffer planning algorithm,” Proc. Of IEEE Intl Symp. Physical Design, 2003, pp. 136-142.
[7] R. Camposano, “Physical design: The whole enchilada,” Proc. Of IEEE Intl Symp. Physical Design, 2003, pp. 3.
[8] B. Eschermann, W.-M. Dai, E. S. Kuh and M. Pedram, “Hierarchical placement for macrocells: A “meet-in-the-

middle” approach,” Proc. Of IEEE Intl Design Automation Conf. , 1988, pp. 460-463.
[9] M. Pedram, and B. Preas, “A hierarchical floorplanning approach,” Proc. Of Intl Conf. Computer Design, 1990, pp.

332-338.
[10] W.-M. Dai, and E. S. Kuh, “Simultaneous floorplanning and global routing for hierarchical building-block layout,”

IEEE Trans. Computer-Aided Design, vol. 6, no. 5, 1987, pp. 828-837.
[11] T. Lengauer, R. Mueller, “ Robust and accurate hierarchical floorplanning with integrated global wiring,” IEEE

Trans. Computer-Aided Design, vol. 12, no. 6,1993, pp. 802-809.
[12] B. Schuermann, J. Altmeyer, and G. Zimmermann, “Three-phase chip planning – an improved top-down chip

planning strategy,” Proc. Of IEEE Intl Conf. Computer-Aided Design, 1992, pp. 598-605.
[13] L.C.W. Dixon. Nonlinear Optimization. English Universities, 1972.
[14] S. Kirkpatrick, C.D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,1983, 220 (4598):671-

680.
[15] N.R Quinn. “The placement problem as viewed from the physics of classic mechanics”. Design Automation

Conference,1975, pp. 173-178.
[16] E. W. Dijkstra, “ A note on two problems in connexion with graphs “ Number. Math., vol. 1, Oct. 1959,pp. 269-271.
[17] K. Ueda, H. Kitazawa, and I. Harada. "CHAMP: Chip floorplan for hierarchical VLSI layout design". In IEEE

Transactions on Computer Aided Design, 1986, pp. 12-22.
[18] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, "VLSI module placement based on rectangle-packing by the

sequence-pair", IEEE Trans. on CAD, Vo1.15, No.12, 1996. pp.1518--1524
[19] http://www.cbl.ncsu.edu
[20] Peter Verplaetse, Dirk Stroobandt, Jan Van Campenhout, "Synthetic benchmark circuits for timing-driven physical

design applications".In Proc. of the Intl. Conf. on VLSI, June 2002, pp. 31-37.

Archive of SID

www.SID.ir

www.SID.ir

