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Abstract 
 
Physical design tasks are very complex and therefore, are usually decomposed into several 
simple subtasks. However, the interdependence between these subtasks and its effect on the 
quality of the design is increasingly becoming more obvious. On the other hand, the 
increasing complexity of systems prevents the integration of the physical design subtasks. 
 This paper presents an integrated approach to the floorplanning, placement and routing 
of very large macrocell-based designs. The framework is given a hierarchical specification 
and performs the physical design subtasks while preserving the specification hierarchy. 
There are some challenging problems in this approach mainly due to the high degree of 
interdependence between levels in the specification hierarchy which makes pure 'divide 
and conquer' strategies useless. A hierarchical global routing algorithm is also introduced 
in this paper. 

 

1. Introduction 
 

With the growing complexity of VLSI systems, the physical design of today's systems has 
become very complex. One approach to control overall complexity, which is usual in 
designing in higher levels of abstraction, is to divide the design into several levels of 
hierarchy. This produces poor results if the interaction between modules at different levels 
of hierarchy is not considered. 
Additional complexity has recently been introduced by the deep submicron technology due 
to the large impact of physical parameters on the quality of the final design. This usually 
leads to many iterations between the processes over various levels of abstraction (e.g. high-
level synthesis and physical design). The cost of iterating between these processes can be 
very high in practice if the layout result cannot provide helpful information to the higher 
level synthesis process. One effective way to provide bilateral information between these 
various design processes is to use a common specification hierarchy. This can facilitate 
incremental modification of the design while avoiding inconvergence in the design 
process. 
However, the high degree of interdependence between levels in the specification hierarchy 
may result in poor layout if pure top-down or pure bottom-up algorithms are exploited. In 
the former approach, even though a good global interconnection view is available at the 
top of hierarchy, there is no information about module sizes/shapes since the placement 
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and routing internal to the modules has yet to be determined. On the other hand, algorithms 
starting from the leaf cells have the advantage of using accurate size, shape and pin 
position information about the modules but since they are unable to use the connectivity 
information of modules at the upper hierarchy levels, an optimal placement at one 
hierarchy level is unlikely to be optimal with respect to the higher levels. 
The algorithm presented in this paper utilizes the advantages of the top-down and bottom-
up strategies by quickly traversing the specification hierarchy in three passes to perform 
floorplanning, placement and routing. 
In this approach, the algorithm first gathers appropriate information about the module 
sizes, pin positions and connection paths before attempting the actual placement and 
routing. The algorithm considers the effect of the hierarchy levels on each other as well as 
routing information during floorplanning. 

 

2. Prior Works 
 

There has been a large amount of research in the field of single-level floorplanning over 
the past decades  [1]  [2]  [3]  [4]  [5]  [6]. However, multi-level hierarchical floorplanning and 
routing of macrocell designs and the inter-dependence among the hierarchy levels have not 
been studied closely. One of the main reasons why this problem has not been addressed is 
that macrocell-based designs have not had many modules until recently and the difficulty 
in handling inter-level dependencies might have hindered CAD designers to adopt this 
strategy. 
However, in the recent years, due to several reasons, including growing complexity of 
designs and the need for design reuse, the number of macrocells in a design is becoming 
very large. Therefore, physical design tools have to handle very complex designs with 
many hard macros [7]. 
However, there are few approaches which attempt to perform floorplanning hierarchically. 
 [8],  [9] and  [10] enumerate all possible topologies of every cell at each hierarchy level and 
then select those that best satisfy the objective function for placement and routing within a 
module incorporating the cells. Dai and Kuh's algorithm [10] tries all possible templates in 
a top-down process to find the best topology according to a desired chip aspect ratio and 
I/O pad positions. However, since this approach fails to take module shapes into account at 
the higher hierarchy levels, it does not work well for chips containing cells with fixed 
geometries and it may need considerable backtracking to effectively search the solution 
space. Eschermann et al  [8] propose an improvement on this approach which passes shape 
estimation information up the hierarchy levels from the bottom. This information is then 
utilized by a process operating top-down, to evaluate the various topological possibilities 
(TPs). This bottom-up process largely constrains the search space since it only computes 
the shape of one configuration at each level, by considering such measures as area and 
shape, and does not carry enough information about the shapes of the modules from the 
bottom levels. Pedram and Preas  [9] propagate accurate information by enumerating all 
TPs in a bottom-up traversal and labeling each module with its shape function (the function 
which gives the possible dimensions a module can have). Some other techniques, such as 
 [11] and [12] also use shape functions to pass size information to upper levels of the 
hierarchy. 
These approaches are limited by the number of modules at each level, as well as the 
number of hierarchy levels, able to be considered, due to the fact that the number of TPs 
grows exponentially with the number of modules. For example, a five-module cell may 
have more than 300,000 different TPs  [8]. 
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This paper presents a fast algorithm which is capable of floorplanning followed by 
placement and routing of very large hierarchical designs. It considers the effects of the 
hierarchy levels on each other and takes routing into account during the floorplanning 
process. A global routing strategy is also presented in this paper. 
 

3. Floorplanning and Placement 
 

Our system is given a design hierarchy consisting of many levels, at each of which the 
modules' netlists are specified. The size and pin positions of all leaf cells in the design are 
assumed to be fixed. The position of I/O ports in the upper most level may be given as 
constraints or left unspecified. In the latter case, the algorithm will attempt to place them 
optimally. The objective of the algorithm is to find the positions and orientations of the leaf 
modules, as well as the shapes and pin positions of the parent modules, while preserving 
the specified hierarchy, in such a way that the combined area and signal path length of the 
circuit is minimized. 
The algorithm consists of four recursive processes. In the first traversal, the size and shape 
of each module within each hierarchy level is regarded as equal because at the top level of 
the specification hierarchy there is no information on the geometry of the modules. It 
performs an initial placement of modules at each level based on the I/O port positions and 
the internal and external connectivities of the module at that level. This is followed by the 
assignment of I/O ports on each placed module's boundary, in an attempt to optimally route 
all interconnections at the parent module level. The process now recurs for each of the 
placed modules. This top-down process produces an initial floorplan containing the global 
connection paths for all modules in the design, which are locally optimum.Based on this 
information, a bottom-up process may be performed to produce an estimation of the 
module sizes, successively, at every level in the specification hierarchy. This is followed 
by another top-down process which gives a more accurate global view of connections, by 
using the more realistic module size information calculated in the previous pass. The next 
bottom-up process then uses the information gathered in the previous passes to perform the 
actual placement and routing. In the following, each process is explained in detail. 
 3.1 Initial floorplanning: This step is to find optimal port positions for each module to 
obtain interconnection paths throughout the design. To do this, it is necessary to determine 
the relative positions of modules within each parent module. Since module size 
information is unavailable initially, all modules at each hierarchy level are assumed to have 
equal size (or sizes based on a rough estimation). 
In this stage, we consider modules to be circles, since there is no information available on 
size and shape. Based on fixed module sizes and port configurations (at a given hierarchy 
level), it is possible to find the optimal position of each submodule's ports through which 
connections are made to other submodules (at this level) and to the parent module. 
Representing a module as a circle also avoids the need to fix pins to one of the four sides 
of a rectangle at an early stage. The simplicity of the algorithm for finding an approximate 
placement of modules, guided by locally optimum wiring, is another reason for 
representing modules as circles, in this stage. 
Using the circle representation, the task of finding the relative positions of modules at each 
level can be viewed as an optimization problem with an objective function which 
maximizes the sizes of submodule circles within a parent module circle, where each 
module has a known size and port configuration, in such a way that the total connection 
length within each hierarchy level is minimized. This problem may be solved by using 
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classic optimization techniques with a composite objective function [13]. However, a 
heuristic method, explained in section 3.5, is used in our system to speed up processing. 

Figure 1: Connection path produced by initial floorplanning. 
 

The first top-down process starts at the root module of the specified hierarchy, where port 
positions on the boundary correspond to desired I/O pad positions. After placing all 
submodules and calculating their maximum allowed size relative to the parent module, 
optimal port positions, for each module of this parent, are determined by connecting the 
centers of the corresponding circles. This procedure is applied recursively to each set of 
modules at each hierarchy level, until the leaf modules are determined. Routing paths can 
now be determined at each hierarchy level, as pin position information is passed from the 
top to the lower levels of the design. Figure 1 shows the result of the process for a 4-level 
hierarchy. 
 3.2 Size estimation and propagation: From the leaf modules, accurate information 
about sizes is available. The first bottom-up traversal attempts to propagate size 
information to the upper levels of the tree. Each module is modeled by its minimum 
enclosing circle, where the area of the circle is the minimum space required for a module 
without having to fix its orientation at this early stage.  
Starting from the leaves, the size of each parent module is estimated based on the relative 
positions of its submodules. These are calculated from the placed circles (modules), having 
fixed the external port positions dictated by the interconnection paths obtained during the 
initial floorplanning process. These port positions are described in terms of the angles at 
which the wires connect to the module, and are, therefore, independent of the module's 
size. These are used, in turn, to find an optimal placement of submodules inside each 
parent module. 
The placement procedure in this traversal is similar to the one used in the floorplanning 
process, but with unequal bounding circle sizes and a scaling postprocess which uses real 
submodule sizes (see Section 3.5 for details). The size of each parent module is then 
determined as the minimum circle enclosing all its submodule circles. By applying this 
procedure recursively in traversing back up the specification hierarchy, the sizes of all 
parent modules in the design are estimated. 
 3.3 Floorplanning improvement: The information obtained during the floorplanning 
process is rather inaccurate due to the unavailability of module size information. With 
estimated sizes available after the first bottom-up traversal, a process similar to initial 
floorplanning is carried out with more realistic module sizes to obtain more accurate 
interconnection path estimates. 
 

Figure 2: Setting block orientations 
 

3.4 final Placement: At this stage, where information about the wiring paths, port 
positions, and module sizes are available, the final placement is performed using 
rectangular blocks. The algorithm for determining the relative placement of circles is based 
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on the last calculated pin positions. The rectangular blocks are then mapped into their 
corresponding circles. The mapping also involves determining the best orientation 
(reflection and 90º,180º, and  270º rotations) of the blocks, determined by enumerating the 
eight possible ways of positioning each block inside its corresponding circle and choosing 
the orientation which results in minimum length routing, when the actual ports of the 
blocks are connected to the port positions around their enclosing circles (Figure 2). In this 
way, the block orientations can be found in linear time with respect to the number of 
modules at each level. Then, in order to improve the placement we use a method based on 
simulated annealing [14], with a restricted move set and low starting temperature which 
preserves the relative placement and results in fast compaction. 
The routing for this module can now be determined (see section 4). The minimum 
bounding circle of each compacted rectangular module has now been determined for the 
parent hierarchy level, and the procedure (placement and routing) is recursively applied 
(upward) until the final layout of all modules is determined.

3.5 Placement Algorithm for One Level of Hierarchy: The heuristic used here to 
determine the optimal placement of circles is based on the force-directed method [15]. The 
algorithm first finds the positions of module centers by considering each connection as an 
attractive force. 

Figure 3: Pin assignment for external nets based on closest point on the boundary. 

 
4. Routing 

In the final bottom-up traversal, each module is routed before the placement of the upper-
level modules is performed. For the global routing of each module, the routing space is 
divided into maximal horizontal rectangles (vacant tiles). Then, a routing graph is 
constructed whose vertices and edges correspond to the vacant tiles and their 
neighborhoods, respectively. The edge weights are assigned according to the available 
space (regarding the initial space and routing congestion). A shortest path algorithm [16] is 
used for the global routing of modules at each hierarchy level. 
There are several problems in a hierarchical environment as follows: 
 
a) External nets: In addition to the internal nets inside a module, there are many external 
ones whose pin positions have not been fixed yet. Three strategies were tried. The position 
of a pin (method  A) for an external net can be set to the point on the boundary which is 
closest to the other terminal(s) of this net (Figure 3).  
 

Figure 4: Use of gathered information from previous traversals in assigning external nets exit points. 
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Another method (method B) is to use the pin position information gathered during the 
previous traversals of the hierarchy. This method should be more effective since it uses 
more global information about the interconnection structure of the whole design (Figure 4). 
 

Figure 5: Routing of external nets can be postponed until their pin position are found. 
 

The third method which is even more effective is to postpone the routing of the external 
nets until the position of all other terminals to which they are connected are known during 
the placement and routing of other modules in the hierarchy. In this way, the routing of 
such nets may be performed at the higher levels of hierarchy when their parent (or 
predecessors) are being routed. These pins may then be located somewhere inside the 
higher-level modules (Figure 5). This prevents wires to be unnecessarily routed around 
some modules. The experimental results in Section 5 shows the effectiveness of each 
strategy. 

Figure 6: Extended routing graph 

 
b) Routing through modules: When the algorithm is routing a module at a hierarchy 
level, a net may unnecessarily be routed around some blocking module(s) if all the 
modules are considered as rigid. However, there are sometimes some space available 
inside the modules and therefore, can be used for routing. We use this space by including 
the routing graph of the blocking module into the routing graph of the current hierarchy 
level (Figure 6). 
 
c) Routing area estimation: Accurate estimation of routing area during placement is 
crucial. Two kinds of approaches were attempted in this work, namely static and dynamic 
estimation. 
 Static estimation: routing space can be estimated on a preprocessing step before 
placement. In this method, routing space is estimated and added to block dimensions and 
then SA is applied to these new blocks. 
 Dynamic estimation: Routing space can be calculated during the placement. In this 
method, routing space for each block is calculated at each iteration of SA algorithm, based 
on current placement of modules. 
For static estimation, two methods were tried in our framework. BEAR-FP[8] adds routing 
area on each side of a module proportional to the number of ports on that side. 
CHAMP[17], on the other hand, finds all module sides coinciding the minimum bounding 
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box of each net and distributes routing space for that net among such module sides. This 
can be done as a preprocessing step (static) or calculated at each iteration (dynamic). 
Murata et al. [18] calculates routing space for a parent module based on the position of nets 
within it. Therefore, the routing space depends on the current placement of submodules 
and, therefore, is estimated dynamically. 
 

5 Experimental results 
 

Since there are no hierarchically specified benchmarks for floorplanning, placement and 
routing, three MCNC benchmarks, i.e. ami33, ami49 and primary1[19] were partitioned 
using the partitioner introduced in [10]. In addition, we produced a large benchmark 
containing 10,000 modules (sample10000) and 24,435 nets generated by gnl-1.1 [20].  
In order to compare our results with other works, we applied the algorithm in [9] to the 
hierarchical designs. Table 1 shows that our approach is both faster and more effective in 
terms of area and total connection length. 
 

Table1:  Comparison with BEAR-FP 
BEAR-FP  Our framework  Bench-

mark Area 
(mm2) 

Net 
length 

Area 
(mm2)

Net length Time 
improve-
ment 

Ami33 1.67 66902 1.68 66982 90% 
Ami49 43.1 809376 44.19 1,075,551 200% 

Primary1 Did not finish 37.66 2,538300  

Table 2 shows the reduction in total connection length of external nets. As the results 
show, using routing information gathered in the three hierarchy traversals can reduce 
routing length by up to 10%. Table 2 also shows that deferring pin assignment for external 
nets until the positions of their terminals are determined, can improve results further, 
especially for large designs. 
Routing through the modules at the lower levels of hierarchy (Figure 6) were also 
embedded into the framework. Table 3 shows that this can improve the routing length of 
external nets with acceptable process speed reduction (the experiments were done on a 
system with a 850 MHz AMD Duron and 256MB RAM). 
To compare the effectiveness of the different approaches for routing area estimation in our 
hierarchical framework, we embedded two static (BEAR-FP and CHAMP) as well as two 
dynamic (dynamic CHAMP and Murata) methods into the algorithm. Table 4 shows the 
improvement in terms of total area and total connection length of each example after 
successful global routing compared with BEAR-FP. The table shows that dynamic 
methods give better results. This is achieved at the expense of small running time (<15%). 
 
Table 2 – External nets length improvement of 
methods B and C compared with method A  
regarding external net routing 

Table 3 – Improvement by routing through modules 

 
Routing strategy 

 
Benchmark B C 

Ami33 6.72% 6.82% 

Ami49 6.68% 6.97% 

Primary1 7.53% 9.42% 

Sample 8.28% 10.03% 

Benchmark 
External net 
length 
improvment 

Time(sec) 
without 

feedthroughs 

Time(sec) 
With 

feedthroughs 
Ami33 9.35% 2 3 

Ami49 9.79% 5 7 

Primary1 12.64% 58 82 

sample10000 18.16% 520 890 
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Table 4- Area and total routing length improvement with respect to BEAR-FP method. 
Static CHAMP Dynamic CHAMP Murata Benchmark 

area Net length area Net length area Net length 
Ami33 -2.92% +0.08% +2.24% +1.68% -2.19% -2.59% 

Ami49 -2.05% -1.43% -1.48% -0.05% -0.09 -1.31% 

Primary1 -1.24% -1.82 +5.56% +3.80% +5.17% +2.97% 

sample10000 -3.78% -4.45% +7.59% +7.18% +9.02% +9.83% 

6 Conclusion 

In this paper, a hierarchical approach to the physical design of large macrocell-based  
designs was proposed. Floorplanning, placement and routing processes, which are 
normally performed in separate consecutive phases (due to the complexity of these 
processes), are integrated in our framework. Specification hierarchy can be preserved 
in this framework in order to facilitate and speed up the design cycle. 
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