

On Securing Mobile Agent Servers
Javad Chamanara

Software system R&D Lab., Computer Engineering
Department, Amirkabir University of Technology

Tehran, Iran.
E-mail: javad@chamanara.com

Abstract — In this paper a secure agent server named J-
SAS is introduced. J-SAS has an Agent Virtual Machine
with the similar functions as a traditional host machine.
By assigning passport to agents, authentication,
verification of passports, and translation of code to safe
version, J-SAS provides a secure environment for
executing the agents. Using resource allocation algorithms,
ACL and authentication, J-SAS shows a good defensive
mood against unauthorized read/ write, denial of service,
and masquerading attacks.

Keywords - Security; Mobile Agent; Agent Server;
Secure Server; Agent Attack

I. INTRODUCTION
Mobile agents in general terms, are autonomous

entities (almost always software) that can run their
execution code upon settling on a proper host. They have
ability to move from one host to others freely, based on
their internal decision making mechanism. Also, they
can memorize their mental state before immigration and
restore them on the target host to continuing their
execution.

 Many researches are carried out on the various
aspects of mobile agents in recent years and many
applications, problems and solutions are provided.
Although some mobile agent systems are implemented
and have attempted to solve these problems in different
ways, unfortunately none of the offered solutions could
support all the mobile agent issues in large scale, real
systems that act in wide areas like Internet [1], [2].

With regards to various specifications and
applications of the agent technology and daily
improvements in its efficiency, we will attempt in the
present article to offer a server model by which we can
receive and execute agents.

Our goal is building a server so that it can execute
received agents with their requirements in a proper way,
regarding to agent to host attacks prevention.

Mohammad Reza Razzazi
Software system R&D Lab., Computer Engineering
Department, Amirkabir University of Technology

Tehran, Iran.
E-mail: razzazi@ce.aut.ac.ir

As we are interested in server-side security utilizing
a virtual machine similar to java virtual machine, we
have named our proposed server as Java allied Secure
Agent Server (J-SAS) in this article.

II. AGENT’S DEFINITION AND SPECIFICATIONS
Our definition of agent is based on Wooldridge-

Jennings [3] and SodaBot [4] agents, but with some
improvements. Bellow is our exact definition:

Agents are entities with some capabilities such as:
calculation, dialogue, negotiation, analysis, decision-
making, and cooperation. Also agents enjoys the
following properties:

• Autonomy: agents operate without the direct
intervention of human and others, and have
some kind of control over their actions and
internal state.

• Social ability: agents interact with other agents
(and possibly humans) via some kind of inter
agent communication language to exchange
their experiences, beliefs, and assigned tasks.

• Reactivity: agents perceive their environments,
and respond in a timely fashion to changes that
occur in it.

• Pro-activeness: agents do not simply act in
response to their environment; they are able to
exhibit goal-oriented behavior by taking
initiative.

• Mobility: agents can halt on a host and resume
their execution on another one to satisfy their
goals

Based on the above definition, we will discuss the
main specifications of our desired agent. These
specifications help us in designing a proper agent
structure as follows:

Archive of SID

www.SID.ir

www.SID.ir

A. Mobility
 An agent should be able to transfer from one host to

another. This transfer can be mentioned explicitly in the
agent, or be apparent to the host machine while
executing.

Stability, extendibility, low cost and common use of
Internet and especially its web service are a proper
situation for agent exchange gateways implementation.
Using POST method of HTTP is a simple and effective
scenario to transfer the agents, so that the whole agent is
delivered to agent exchange gateway by POST method
as a HTTP Request [5].

Fortunately the existing web servers like MS Internet
Information Server (MS IIS) and Apache Web Server
running on various operating systems utilize this
capability. Thus a module could be designed and
embedded on HTTP servers to receive delivered agents
and provide them to the server.

B. State Dependency
State dependency means that an agent when arrives

in each server, has a primary state, probably acquired
from the previous server. That is, run time agent
variables have certain values and server should initiate
them prior to agent execution.

As Agent State is included in agent structure, the
expected server should extract and adjust the run time
variables primary values before the agent’s execution
[6].

C. Communication
An agent may intend to communicate with its

surrounding environment [7], [1]. This communication
often takes place for these reasons:

• Environment sensing: collect information in
order to recognize its environment.

• Inter Agent Cooperation: exchange of
information in order to cooperate with other
agents in the network.

• Agent Advertisement: distribute information
about itself in order to make others aware of its
presence and capabilities.

The above-mentioned issues are main specifications
of the agent that this article attempts to support them in
the next sections.

III. AGENT PRIMARY MODEL
In order to design the primary model of an agent

server, a basic structure of the agent should be defined.

Any agent may confront various problems in its life
cycle. In order to classify the agent parts, we will do the
following:

As from the agent definition, it should be authorized
to execute its code, so one of the agent’s main structural
parts will be “Agent Code”. Also when an agent enters
or leaves the server, it has a state vector that shows its
primary and final “State” respectively. Each agent has
some natural specifications like owner, producer and etc.
In order to save this information we add another part to
the agent structure named “Agent Specification”.

As mentioned, agents have the ability to move over
various servers. Therefore servers see the agents as
external entities that trusting them could not be
reasonable. So servers require an agent authentication
method and certificates by which they can trust it. To
reach this end, we add another part to the agent structure
that has all required “Certificates”. As result the general
structure of an agent will be as in figure 3.1.

Before going to detail of J-SAS, in the next section
we will describe general misbehaviors that agents can do
against the servers.

Figure 3.1. Agent general structure

IV. AGENT TO HOST ATTACKS & DEFENCES MODEL
We concentrate on providing server security against

malicious agents. To do so, we define the malicious
agents by describing misbehaviors that agents can do
against any server.

Generally the abnormal behaviors occurring by an
agent can be classified as below [8], [9], [10]:

• DIS_ATK: (Unauthorized disclosure) By this
behavior, agent can read existing data, without
necessary permissions.

• MOD_ATK: (Unauthorized Modification) By
this behavior, agent may change or destroy
existing data without necessary permissions.

• DOS_ATK: (Denial Of Service) By this
behavior, agent may unaccustomedly consume
server’s shared resources, so that it halts other
services. Also it can disable other agents by
sending them numerous messages.

Certificates

Specification

States

Code

Archive of SID

www.SID.ir

www.SID.ir

• MQR_ATK: (Masquerading Attack) By this
behavior, agent could enjoy the advantages of a
trusted user and execute its code, neglecting the
server. In other words, agent may masquerade as
other agents.

Security model, which we are seeking, attempts to
prevent the above-mentioned behaviors throughout agent
life cycle. To reach this end, we briefly explain how the
server reacts to such behaviors.

A. DIS_ATK
This attack can be applicable only when an agent is

capable to read any data from resources. We must
establish the access to the resources through a
controllable procedure.

It is possible to use ACL1 mechanism to manage the
access to the resources.

So in order to prevent such attacks, a SPM2 is
established in the server. Using SPM, an ACL set is
assigned to every useable resource. SPM can assign
access level to the entered agents and respond to the
security related requests issued by different parts of the
server. All the agent requests for accessing the resources
will be analyzed by SPM and it will be accepted or
rejected after inspection.

To prevent the MOD_ATK, a similar approach can
be applied.

To assign ACL to the server resources and the
entered agent, following general operations should be
accomplished by SPM:

• SPM assigns an access list to each resource.
Each list determines in what way agents/
producers/ owners/ users can use the resources.

• After authentication, the entered agent will be
delivered to the SPM along with its resulted
passport. According to its available ACLs, SPM
attaches an ACL to the agent.

After authentication of the delivered agent it will be
sent to SPM. SPM will determine its access level. Then
the agent will be executed, but in order to access any
resources, it must pass SPM policies. Therefore, SPM
can monitor the access of the agents to server resources.
The above method can be employed to prevent
DIS_ATK and MOD_ATK.

B. DOS_ATK
As said before, this attack will unaccustomedly

consume the server resources so that other available
services in the server won’t be able to continue their
execution and in some cases these services are stopped
by the Operating System due to the lack of the resources.

1 Access Control List
2 Security Policy Manager

To prevent such attack, some tasks should be done as
below:

The first step is to observe the received agent code to
find ambiguous cases. Ambiguous cases include using
unsafe classes, trying to access objects without proper
permission and so on. Using code verification [11], code
rewriting and resource accounting [12] algorithms we
can over come this problem.

The next step is to design an RFI3 in the run time
virtual machine through which all the agent requests to
access to the server resources are passed, before they
reach the SPM. Employing the SPM security policies,
RFI realize how, when and to what extend, an agent
would access the resources, so it decides on the agent
request accordingly. This is a technical decision, In other
words, RFI examines the request to see whether the
needed resources are available in the server and whether
the agent quota is remained or not.

Final step is that, agent code commonly contains
instructions, which create needed objects for the agent
on the server. (In Java, JVM creates the intended object
and delivers it to the applicant.) Then applicant may use
the properties and methods of that object. This can cause
DOS_ATK also. In order to prevent such attacks, server
should consider the followings:

• Agent code contains just one class. This means
that agent code is not authorized to request the
creation of the objects that are along with the
agent or they are in an area beyond SPM scope.

• Existing classes in server CLASS-PATH are
revised in a way that they do not threaten the
server. These classes are called “Safe Class”.

• SPM bears the list of safe classes and attaches
proper ACL to them.

As discussed above, a certain RFI performs the agent
requests on the agent side in coordination with SPM.
Therefore, the object creation requests are performed
under SPM inspection. So the server will assure that:

• No agent can exceed its allocated quota (RFI
determines the maximum accessible resources
for each agent).

• No agent is able to contain instruction, which
leads to object creation out of safe classes (this
function is performed through code verification).

• No agent has direct access to the resources.

• The agents will be executing in the isolated
threads.

The above conditions assure that agents will not
cause DOS_ATK.

3 Resource Feasibility Inspector

Archive of SID

www.SID.ir

www.SID.ir

C. MQR_ATK
As mentioned earlier, the agent contains

specifications related to manufacturing company, owner,
user and its sending source. The sender may be offline as
the agent is received or it may happen that the
intermediate server sends the agent. So in order to
prevent MQR_ATK following tasks must be performed:

• Agent Authentication: this prevents forging the
name and specification of the agents through
controlling the signature of the manufacturing
company.

• Owner Authentication: this prevents stealing the
agent, forging owner’s name or abusing owner’s
confidence. Authentication can be done by
owner or Retailer Company signature.

• Code Authentication: we suppose the sender
machine (original sender machine and
intermediate servers) will have signed agents’
code as it leaves the machine. So to authenticate
the code, it is possible to use the signatures of
original and intermediate machines.

• User Authentication: while sending the agent,
user signs its own part. This signature will be
evaluated in receiving server. In the case of
approval, the pre-specified access level in SPM
will be devoted.

• Providing access list: SPM has the responsibility
to provide all resources accessible to agents with
appropriate access lists categorized as agent/
owner/ user, and maintain them. After
authentication of the agent/ owner/ user/ code,
SPM creates and attaches an access control list
to the agents. For any resource, this list carries
the minimum right among the agent/ owner/ user
rights.

Therefore, using the signatures of manufacturing and
retailer companies, owner, user and intermediate
machines as well as a proper and secure signature
pattern, arrival agent will be authenticated, receive their
access control lists, and can be executed in a controlled
environment.

V. OPERATIONAL SERVER MODEL
The final model of a desirable server is divided into

two distinct units. This division helps the stability,
extendibility and security of the system. These units as
discussed in the sections VI.A and VI.B, have their own
specific functional features and can be implemented on
different hosts.

A. Agent Gateway
AgG acts as a gateway to the outside world. Its

responsibility is to receive, format, authenticate and
locate arrived agents. To describe the responsibilities of

AgG, its model is shown in figure 5.1and its subunits
will be discussed as below:

a) HTTP Server
HTTP server is an application which is already

prepared and installed on an operating system and
performs HTTP protocol operations. Windows family
operating systems use IIS and UNIX family operating
systems use Apache as the most common HTTP servers.

To develop the users intended capabilities IIS offers
ISAPI (Internet Server Application Programming
Interface) technology. Apache can also be developed
through designing and implementing modules. So
servers are able to send and receive the agents as HTTP
POST and GET methods. This helps AgS and AgG to
act in a heterogeneous network without changing the
existing platforms.

b) Agent Receiver
This unit can be implemented as an ISAPI extension

or an Apache module. Also it is supposed to coordinate
with HTTP server in order to get the received agent,
separate agent code from HTTP header and deliver the
agents to the next unit.

c) Preprocessor and Formatter
If necessary, this part is able to check the agent

format, different parts of the agent, data integrity, etc. If
different agents have different formats, it is also able to
form them in a way that local servers could recognize
them. Moreover, this unit is responsible for determining
the encryption method of agent body if exist.

d) Authenticator
Its responsibility is to extract agent certificates part

and authenticate the agent/owner/user/code and previous
server, which has sent the agent. Based on needs,
capabilities, costs, and standards, different authentication
methods could be applied. Using PKI is our main
approach. The sender of the agent may generally encrypt
and send the agent. If so, the authenticator first decrypts
the agent by using a proper algorithm, then it will decide
to authenticate it.

Having authenticated different parts of the agent,
authenticator issues a passport to the agent. It writes the
specifications of the agent/user/code, authentication time
and results, its own specifications, and time interval of
passport credit on it and signs the passport. This passport
is just used internally and it is possible to add AgS list,
which can be met by the agent. So the agents are sent to
certain AgSs, and can only be run on those AgSs.
Regarding the internal state of passport credit scope,
authenticator is capable to use Hashing algorithms such
as MD5 to sign the passports. So a shared secret key is
offered to AgGs and AgSs to be used to calculate and
accept or reject the signature. Thus while the agent is
being run in AgS, the related units could react properly
to its requests using agent passport.

Archive of SID

www.SID.ir

www.SID.ir

e) Agent Mediator
The responsibility of this unit is to prepare the agent

and its passport and coordinate with one of existing
AgSs in the network in order to send the agent to it. This
unit is aware of the presence of AgSs and AgGs in the
network. To balance the load and select proper AgSs, it
utilizes all AgGs load information. Having chosen the
AgS, agent mediator communicates with it and requests
the agent delivery. If AgS accept, agent mediator will
send agent to it. Otherwise, agent mediator should repeat
this procedure in order to find another AgS. To select the
AgS, existing scheduling algorithms can be used.

Figure 5.1. Agent Gateway model

AgG and AgS have other communications in
addition to receiving and delivering the agents.
Therefore, we attempt to use a simple communication
model. To do so, AgS is considered as a service, which
can communicate through TCP/IP protocol suite.
Therefore, AgG or any other consistent tool can
communicate with AgS to exchange data.

AgS makes an appropriate structure for received data
and according to that structure, AgGs connect to the
related service, afterward they will be capable to deliver
their data. For this purpose, sender puts one byte pattern
at the initial part of the dispatched stream and sends it to
AgS. AgS also decides about it’s meaning based on that
initial pattern.

It is clear that AgS can be applied for exchanging the
management and control messages of the system and the
messages among the agents in addition to agent transfer,
through AGENT_PORT. The reverse procedure can also
be applied, that is AgS may need to send a message to
AgG to do certain activities. In that case, AgS pack the
massage, put the byte pattern on its initial part and send
it to AgG. AgG uses HTTP port to receive its packets. In
fact, AgS sends its messages to Agent Receiver. The
details will be explored in Inter Agent Communication
in this article. The following stream will be sent by AgG
to AgS in order to deliver the agent.

AgGi->Send (Code, passport_len, agent_len, Passport, Agent) TO
AgSj

That Code = 0 shows that delivered stream is an
agent. Passport contains information and signature of
AgGi and Agent is the received agent by AgGi, which is
supposed to be performed on AgSj. The passport_len and
agent_len are passport and agent lengths respectively in
bytes. In this unit, TCP/IP will make communication
protocol simple and easy to improve.

As AgS and AgG are kept behind the firewall, there
won’t be any IP attacks in AgS, as both firewall and the
service itself are capable to prevent unauthorized
machines to access it. Furthermore, using a passport
makes AgS capable to perform AgG authentication.

B. Agent Server
AgS is an application, which can be viewed as a

service on the server. On starting, it can be bind to an IP
address in private scope and listen to a specific TCP port
like AGENT_PORT. This port provides Agent Virtual
Machine Handler (AVMH) with all received data so that
it decides based on them. In some cases, AgS may need
to communicate with outside world so it will deliver its
requests to intended AgG and receive the proper answer.
Agent server farm is configured in a way that each AgS
and AgG obtains a unique name in the network and also
each AgG obtains a unique name in the Internet. To
reach this end, it is possible to use DNS convention. In
this model all formal agreements as choosing domain
name, allocating general IP scope, getting related
certifications will be called as AgGs.

As shown in figure 5.2, AgS consists of different
units as below:

a) Agent Controller
This unit receives the entered agents under the

control of AVMH and takes the following steps:

• Checking data integrity of the agent

• Checking data integrity of the agent passport

• Authentication of sending AgG

• Controlling the signature of sending AgG

• Making necessary controls on certain requests

HTTP Server

Agent Receiver

Pre Processor

Authenticator

Agent Mediator

Agent Gateway

Corporate
Network

Internet

Archive of SID

www.SID.ir

www.SID.ir

• Signing outgoing requests or agents which are
prepared to be sent

b) Safe Code Generator
The responsibility of this part is to check the agent to

figure out if there is a reference to a class rather than
SPM verified classes or not. If such references exist,
SCG1 attempts to change them to safe references
(replace them by safe versions). If there is not a safe
class in AgS for a reference, SCG will introduce the
agent to AVMH as an unsafe agent.

The operations, from which all agents are forbidden,
are taken into account by this part.

Figure 5.2. Agent Gateway model

1 Safe Code Generator

c) Code Verifier
This unit is similar to JVM code verifier, but it is

optimized to check the agent code. Among its
responsibilities are:

• Jumps and loops addresses checking

• Type checking

• Code evaluation in order to estimate intended
memory and processor

• Evaluation of the default agent state values with
acceptable variables values

d) Daemon
After receiving the agent, this unit checks the

possibility of its execution using RFI. In the case of RFI
acceptance, agent and its specifications will be added to
the active agents list. This task is taken in order to enable
SPM to monitor the consumption of the resources, as in
each AgS, only SPM is aware of the limitations imposed
on agents’ operation procedure, maximum number of
agents that can be run, accessible resources and so on.

As a list of the running agents is kept in AgS, a data
structure named Active-Agent would keep agent
information, the general form of which is as below:
Structure Active-Agent
{

Agent-Name
Arrival-Time
Arrival-Gateway
Departure-Time
Departure-Cause
Thread-Name (Address)
Agent (include code,
certificates, specifications
and state)
Agent-Passport
Agent-ACL
Structure Active-Agent *Next,
*Previous

};
Declare Active-Agent-List AS List of
Active-Agent;

It includes the minimum cases, which are considered
to manage the agent, and may be changed in practice.

After adding an agent to Active-Agent-List, daemon
creates a separate thread (Agent-Thread) and assigns a
unique name to it. In this stage daemon initialize the data
items of the active agent data structure with appropriate
data. Daemon provides passport with SPM in order to
receive ACLs of current agent and SPM extracts ACLs
of agent from Agent Directory Manager (ADM) and
send them back to daemon. Finally, after the above-
mentioned activities are done successfully, daemon
prepares the execution of the agents by passing their
entry point addresses to Agent-Thread.

e) Agent Virtual Machine

A
gent 1

A
gent 2

A
gent n

Daemon

Code Verifier

Safe Code Generator

Agent Controller

Agent Server

A

gent V
irtual

M
achine H

andler

Host Physical Resources

Agent Code

Corporate Network

D
irectory

D
B

File

C
lass

M
em

ory

Resources Feasibility Inspector

Agent Resources Directory

Agent Directory Manager

Security Policy
Manager

Agent Communication
Manager

Inter A
gent C

om
m

unication
M

anager

Archive of SID

www.SID.ir

www.SID.ir

AVM provides an execution environment, which
includes processor, stack, register bank, program
counter, I/O, and so on [11]. In this way the agent
assumes that it is run in an actual machine. This machine
contains certain instruction set, which is optimized to run
agents and facilitate their communication. As this article
attempts to utilize the current technologies, we utilize
Java Virtual Machine instructions to implement AVM.
Each instruction will be compiled in a series of native
commands by local machine so that all of them will
perform the following sequence of ACTION at the run
time:

• To evaluate resource allocation feasibility
through RFI.

• To check the security permissions through SPM
and ACLs.

• To perform given tasks.

• To update the values of registers, stack, PC and
etc.

• To log the related events in order to perform
auditing and accounting.

AVM starts to initialize objects and variables by the
use of agent state and wherever necessary it instantiates
objects. It then resets PC and other registers. After
initialization, AVM starts to run the agent instructions
line by line. Agent executive model in AVM as can be
presented as below:

Do {

Fetch next Opcode;

If (Opcode HAS Operand) Fetch
Operands;

Execute the ACTIONS related to
Opcode;

} While (There is more to do)

In this manner, after reading every Opcode and its
Operands, AVM performs their sequence of ACTIONS.

f) Agent Virtual Machine Handler
This unit is basically responsible for coordinating the

activities of the other units. Moreover, this unit may be
responsible for the following:

• Garbage collection

• Error Handling

• Event logging

• Communicating with AgGs

• Communicating with other AgSs

• Load monitoring

In the following the methods of SPM and RFI
activities such as mechanisms of resources access
control, access permission adjustment, and offered
communicative mechanisms by AgS, are discussed.

g) Access control mechanism
In order to control access to the resources, we

suppose that each AgS is running on a specific host,
which allocates certain resources to AgS such as
memory, processor, file, network and etc. To manage the
existing resources, AgS makes a directory that can
maintain resources list and its attributes. The directory is
introduced in AgS as ARD1. ARD is accessible and can
be managed through another unit called Agent Directory
Manager.

ADM2 offers a number of functions to add, delete,
edit and search ARD entries. Using ADM, other units
can request data items such as ACLs, safe class names,
files and other resources or manipulate ARD’s entries.

So there is a list of accessible resources and their
specifications associated with the lists of access control,
where them could be managed through SPM. Using the
above-mentioned information, we explain how an agent
requests a resource:

Agent-Thread reads an instruction from an agent
code, which contains the request for using a resource.
Agent-Thread sends the request to ACM3. By evaluation
of the request, ACM is informed that the requesting
agent needs the access to a local AgS resource, so it
sends the request to RFI.

After assessing the request type, RFI checks whether
there are available resources to be allocated. In case of
acceptance, RFI will deliver it to SPM to check its
security. SPM controls the agents’ ACLs and sends the
results back to RFI. If all the above evaluations are
passed successfully, the resource will indirectly be given
to the agent through RFI. “Indirectly” means the agent
have no access to resources directly but there is a
Resource Allocation Table in RFI which shows that the
resource is assigned to which agents with what
permissions. Finally, the agent is provided with the
index of related item in this table.

It is worth mentioning that considering the
continuous development and modification of AgS
resources, a policy is made in RFI to support this
capability.

To reach this end, we divided RFI into two sections,
static and dynamic. The static part is considered to do
basic functions and preserve tables and states, while
dynamic parts are able to maintain the specific module
of each resource. So RFI can recognize the request type
and send it to its specific modules. The related module

1 Agent Resources Directory
2 Agent Directory Manager
3 Agent Communication Manager

Archive of SID

www.SID.ir

www.SID.ir

will do the requested operations and return the results to
RFI. The modules for accessing the memory, safe
classes, file, network, database and etc, are of this kind.
In addition, these modules can operate the actual actions
such as reading and writing according to instructions.

In order to implement the above model, we can
realize ARD and ADM units by means of LDAP1. ARD
and ADM are considered as LDAP server. Other units
that need to utilize this service (i.e. SPM and RFI) are
considered as LDAP Client.

Using LDAP protocol makes it simple to design and
apply ARD, ADM, and RFI based on a standard pattern.
Moreover, considering that Windows and UNIX
families’ operating systems support this protocol, it
decreases the server development cost.

h) Inter Agent Communication
As mentioned earlier, all the participating members

in the model are considered as agents. So you can see
ACM section in a way that this unit is supposed to fulfill
the communication requests of active agents in AgS.
This unit must be able to distinguish the requests related
to resources, communications with local agents, and
communication with remote agents.

The offered ACM in this article divides requests into
two main groups:

The first group includes requests related to local
resources and the second group includes the requests
related to communication between agents.

ACM will provide RFI with all relevant requests to
access the resources and it will direct all communication
requests to IACM2. If IACM receives a request, will
locate the destination. Then in cooperation with SPM,
IACM will contact target AgG and will perform the
related operations. Finally it will inform the source agent
of the request result through ACM.

If the target agent is alive, it can be found in one of
the following locations:

• In local AgS

• In one of the AgSs in local network

• In other active AgSs in Internet

IACM can evaluate the first task, as it can easily
access the Active-Agent-List. If local AgS lacks the
agents, IACM should search the local network AgSs.
Requesting it from local network AgG can do this. If
local network lacks the agent, IACM should find it in a
world as big as Internet. To do this, some algorithms like
Agent Broker and Agents Advertisement are offered
which will not be discussed here.

1 Lightweight Directory Access Protocol
2 Inter Agent Communication Manager

VI. RELATED WORK
We considered major agent platform that are

referenced in [2]. As mentioned in this article a mobile
agent platform must provide mechanisms for mobility,
state dependency, code altering, and communications in
a secure way. Java seal [13], [8] use special kernel and
Java sandbox mechanism and no support for code
altering. AgentSpace have no built-in security
mechanism [14]. IBM Japan Aglets have security
mechanism that includes authentication, data integrity,
confidentiality, and authorization. Aglets utilize ATP3
for inter agent communications [15]. Aglets are
dependent on underlying Java system. Security of the
aglets against runtime class loading, when aglets utilize
more than one class, is not clear. The definition of
SOMA allows enforcing layered security policies: the
domain defines a global security policy that imposes
general rules; each place can apply restrictions to the
domain-level set of permissions. SOMA protects hosts
against potentially malicious agents by supporting agent
authentication and authorization at both domain and
place level. SOMA authorization service is designed to
perform flexible and fine-grained access controls that
depend on both static and dynamic attributes utilizing
Ponder [2]. FarGo is a development and runtime
environment for wide-area distributed applications.
FarGo provides a monitoring facility that can measure
performance and resource consumption, and can notify
the application upon the occurrence of various events
[16]. Java Agent Template, JATLite facilitates
construction of agents using the emerging standard
communications language, KQML and provides a basic
infrastructure in which agents register with an Agent
Message Router facilitator using a name and password,
send and receive messages and transfer files [17].
aZIMAs (almost Zero Infrastructure Mobile Agents
system) that is a mobile agent platform, based on
existing Apache web servers and the HTTP protocol
utilize Apache and JVM security model [5].

VII. CONCLUSION
We presented the design and implementation issues

that must be addressed by mobile agent platforms. The J-
SAS offers strong isolation of agents, efficient and
transparent communication and mobility facilities, load
balancing over agent servers, fault tolerance against
failure of nodes, distribution over network, OS
independency, and layered security mechanism. While
the agent server is responsible for isolation, internal
communication, safe code generation, run time code
alteration, and policy based resource control and the
agent gateway is responsible for agent interchange,
authentication, load balancing, and external
communication. The J-SAS mobile agent system is
based on a security policy manager architecture
providing the necessary security features for commercial

3 Agent Transfer Protocol

Archive of SID

www.SID.ir

www.SID.ir

mobile agent applications. The agent gateway and agent
server can be implemented in C++ or Java, but because
of similarity of AVM and JVM, it is better to implement
the agent server in Java. J-SAS is prepared for resource
accounting and auditing, which could be used for
reporting, billing and intrusion detection.

VIII. REFERENCES
[1] Wayne A. Jansen, “Countermeasures for Mobile Agent

Security”, National Institute of Standards and Technology
Gaithersburg, MD 20899, USA.

[2] Xiaotong Zhuang, “Survey of the security aspects in mobile
agent systems”.

[3] Michael Wooldrige, Nicholas R. Jennings, “Inteligent Agent
Theory and Practice”, Department of Computer Science,
University of Liverpool, Liverpool, United Kingdom, 1995.

[4] GeoAgent Project, Department of Geography, San Diego State
University, USA, 2002.

[5] Amar Nalla, Abdelsalam (Sumi) Helal and Vidya
Renganarayanan, “aZIMAs – almost Zero Infrastructure Mobile
Agent System”, University of Florida, 2002.

[6] Wayne Jansen, Tom Karygiannis, “Privilege Management of
Mobile Agents”, National Institute of Standards and
Technology, National Information System Security Conference,
October 2000.

[7] Alberto Silva, José Delgado, “The Agent Pattern for Mobile
Agent Systems”, 3 rd European Conference on Pattern
Languages of Programming and Computing, EuroPLoP'98,
INESC & IST Technical University of Lisbon, Portugal, 1998.

[8] Jan Vitek, Ciaran Bryce, “The JavaSeal Mobile Agent Kernel”,
Proceedings of the Joint Symposium ASA/MA’99, First
International Symposium on Agent Systems and Applications
(ASA’99) and Third International Symposium on Mobile Agents
(MA’99) Palm Springs, California, October 3 - 6, 1999.

[9] Wayne Jansen, Tom Karygiannis, “NIST Special Publication
800-19 – Mobile Agent Security”, National Institute of
Standards and Technology, August 1999.

[10] Danny B. Lange, Yariv Aridor, “Agent Transfer Protocol --
ATP/0.1”, IBM Tokyo Research Laboratory, 1997.

[11] Tim Lind Holm, Frank Yellin, The JavaTM Virtual Machine
Specification, Second Edition, Sun Microsystems, 1999.

[12] Grzegorz Czajkowski and Thorsten von Eicken, “JRes: A
Resource Accounting Interface for Java”, ACM Conference on
Object Oriented Languages and Systems (OOPSLA),
Vancouver, Canada, October 1998.

[13] Walter Binder, CoCo Software Engineering GmbH,“Design and
Implementation of the J-SEAL2 Mobile Agent Kernel”, 2001
Symposium on Applications and the Internet (SAINT 2001), San
Diego, CA, USA, 2001.

[14] AgentSpace: A Next-Generation Mobile Agent System,
Telematics Systems and Services Group - INESC, Technical
University of Lisbon, PORTUGAL, 1998.

[15] Mitsuru Oshima, Guenter Karjoth, Kouichi Ono, “Aglets
Specification 1.1 Draft”, IBM Tokyo Research Laboratory,
1998.

[16] Issy Ben-Shaul, Ophir Holder, Hovav Gazit, Boris Lavva, Yoad
Gidron, FarGo: Mobile Agent Development Environment,
Technion - Israel Institute of Technology, 1998.

[17] Heecheol Jeon, Java Agent Template, Stanford University, 1996.

Archive of SID

www.SID.ir

www.SID.ir

