
Synthesis Tool for Asynchronous Circuits Based on
PCFB and PCHB

1K. Saleh, 1H. Pedram, 1M. Naderi, 1M. H. Shafiaabadi, 1H. Kalantari, 2A. Farhoodfar
1Department of Computer Eng. and IT, Amirkabir University of Technology

Hafez Ave., Tehran 15875, Iran
{k.saleh, pedram, naderi, shafiaabadi, hkalantari}@ce.aut.ac.ir

2Applied Micro Circuit Corporation, Kanata, ON, Canada
afarhood@amcc.com

Abstract

This paper introduces a synthesis tool
for template-based synthesis of
asynchronous circuits. The tool, named
Template Synthesizer (TSYN) and it is a
part of a complete asynchronous design
flow named Persia. This tool transforms a
behavioral description of a circuit to a
sized transistor net-list. The input
behavioral description must fit into some
previously known templates. These
templates are general enough to allow
implementation of almost all circuit
blocks. Finally, an asynchronous Reed-
Solomon Decoder is synthesized using this
tool.

Keywords: Asynchronous, Synthesis

1. Introduction

One of the most important problems in
popularity of asynchronous circuits is
complex design and synthesis methods and
lack of automatic tools. Many different
asynchronous circuit design methods are
proposed [1,2,3] but the synthesis method
developed in Caltech [4] has shown better
capability to gain higher performance,
lower power and more robustness in
different environmental conditions [5,6].

This synthesis method is based on QDI
timing model.

Because of the complexity of the
Caltech’s synthesis method, using
templates for reducing the design cycle is
considered as a solution [7,8]. TSYN, a
part of Persia [9], is proposed to automate
synthesizing specific templates. Because
Verilog is used as the HDL in all levels of
abstraction, it is not required to design
customized simulation tool. The standard
Verilog simulators powered by a library of
macros and PLI routines can be used to
simulate asynchronous circuits [10,11].
Verilog is chosen because of availability of
fork and join constructs, which are critical
for describing asynchronous circuits, and
very good support for switch-level
simulation.

In Caltech synthesis method, the circuit
is modeled at the behavioral level using a
CSP [12] derived language. Then the initial
design is decomposed to smaller CSP
blocks and this procedure is continued to
get the simple elements. The elements
generated by this method are modeled as
processes communicating to each other
using input and output channels.
Communications between different
processes are via handshaking and in most

Archive of SID

www.SID.ir

www.SID.ir

cases include data transfer as well. This can
be viewed as read or write operations.

The circuit should be decomposed to
basic elements complying PCFB (Pre-
Charge logic Full-Buffer) or PCHB (Pre-
Charge logic Half-Buffer) templates before
using this tool. These templates imply that
all read operations must precede write
operations. It normally includes evaluation
of functions, where some input data is read
and the computed value is put on outputs.

The Caltech synthesis method is
described in section 2. Section 3 explains
PCFB and PCHB templates. The synthesis
tool behavior is presented in sections 4
through 6. A sample circuit and its
synthesized equivalent are presented in
section 7 and finally, experimental results
are shown in section 8.

2. Synthesis Method

After decomposition, each block is fed
into synthesis tool. In the first step, this
behavioral description is transformed into a
set of production Rules (PR). Each PR
describes pull-up or pull-down network of
a CMOS circuit.

In the second step, Operator Reduction,
some PRs are replaced by standard gates
such as AND, OR, NAND, etc. Also state-
holding elements are added to the outputs
where needed. The output of this step
composed of a set of gates and PRs is fed
into the third step of the synthesis tool,
which should produce the final circuit. In
the last step, PRs are converted into a
network of NMOS and PMOS switches
and transistor sizes are determined. The
overview of the synthesis flow is depicted
in figure 1.

In the following sections we describe the
structure of PCFB and PCHB templates
and then three steps of TSYN are
described.

Figure 1: The synthesis flow

3. PCFB and PCHB templates

Structure of PCFB and PCHB templates
are shown in figure 2 and figure 3. Input
and outputs are dual-rail coded [13], so the
circuit can determine the validity of the
input or output value.

As it can be seen in these figures, after
validation of the input, the output is
computed and after validation of the
output, InputAck signal is activated. The
output value is neutralized upon receiving
the OutputAck signal, and the InputAck
returns to zero after neutralization of
inputs. Therefore, in all ports a four-phase
handshake takes place [4]. The
PCFB/PCHB circuits could communicate
to each other. In other words, output of
any circuit could be connected to any input
port of any other blocks and there is no
need for any extra signal lines such as clock
line. Each block is activated upon receiving
a valid input. Input validity detection
circuitry is similar to figure 4.

In these circuits there is special gate
indicated by a ‘c’ letter and called C-
element with inverted output. This gate is
not used in normal synchronous circuits
and operates as follows: when all of the

Archive of SID

www.SID.ir

www.SID.ir

inputs of the gate are zero, the output
raises and when all the inputs of the gate
are one, the output goes down. In other
cases the gate holds its previous output
value. This gate can be used as a small
memory element.

Figure 2: PCHB block diagram

Figure 3: PCFB block diagram

Figure 4: Validity checker circuit for a 3-bit
dual-rail input

The only difference between PCFB and
PCHB templates is that in the PCFB,
neutralization of the output and falling of
InputAck could happen together and
independent of each other. On the other
hand, in PCHB blocks always InputAck
goes down after neutralization of the
output.

In Figures 2 and 3, the circuits only have
normal (Unconditional) input/outputs and
perform simple computations on the data.
PCFB and PCHB templates can perform
more complicated operations such as
conditional input and output actions and
also can contain internal state variables [7,
8]. TSYN can synthesize circuits
containing all of these types of operations.
These templates are versatile enough to
allow implementation of almost all circuit
blocks [7].

The most important part to be
mentioned during decomposition of the
circuits is the contribution of smaller blocks
to higher operation speed. This is due to
more fine-grained pipeline that is
achieved. The fine-grain pipelines increase
the area because of completion detection
circuits. This is the same as the
synchronous pipeline stages in spite of the
fact that these circuits do not need any
extra registers.

4. PCHB/PCFB Synthesizer

This program receives the behavioral
description of the circuit including read,
write and function evaluation in Verilog
[10,11] format. For example the
description of a 4-input fully asynchronous
NOR gate is described as follows:

always begin
 `READ(a)
 `READ(b)
 `READ(c)
 `READ(d)
 x = ~ (a | b | c | d);
 `WRITE(x)
end

Archive of SID

www.SID.ir

www.SID.ir

The PCHB/PCFB synthesizer is able to
synthesize any logical condition for read,
write or function evaluation. The general
format of the behavioral description is as
follows:

 `READ(a)

 if (Condition1)
 `READ(b)

 x = function1
 `WRITE(x)

 if (condition2) begin
 y = function2;
 `WRITE(y)
 end

This step of the synthesis generates a set
of PRs. Each PR describes a pull-up or a
pull-down network of a CMOS gate and all
PRs together implement the same
functionality as the original CSP code. For
example the circuit depicted in figure 5 can
be described by PRs in the following
manner:

`PR_SET(~a | ~b | ~c , z)
`PR_RESET(a & b & c , z)

Figure 5: A sample 3-input NAND

By defining the PR_SET and
PR_RESET macros, this description can be
simulated by a normal Verilog simulator.

5. Operator Reduction

In this step PRs which can be mapped
into standard gates are extracted and
replaced by the equivalent gates. This
operation is performed using evaluation of
the logical expression in the PRs for
different input values and comparing the
results to the available gates in the library
and corresponding truth tables.

The second functionality of this step is
adding state-holding [4] elements to
CMOS circuits that are not
complementary. The result of this step
consists of a set of PRs that could not be
mapped into standard gates plus a net-list
of standard gates and state-holders.

6. PR to CMOS transformation

In this step each PR is converted into a
transistor network. For example the
following PRs are converted to circuit in
figure 6.

`PR_SET((~a | ~b) & ~c , z)

`PR_RESET((a & b) | c , z)

Figure 6: A sample transformation of PR to
CMOS

This program can implement any logical
function as a transistor network and finally
generate Verilog or Spice output.

Archive of SID

www.SID.ir

www.SID.ir

The other task of this step is transistor
sizing for generating final layout. Transistor
sizing of an inverter is used as a base to
calculate transistor sizes in a more
complicated network. Finally, we get a
transistor netlist suitable for simulation and
layout generation.

7. Synthesis of a sample circuit

For a clear view of the operation of the
synthesis tool, consider the synthesis of a
PCFB De-Multiplexer as depicted in figure
7. The circuit has an input port named a
and a control port named sel and two
output ports named x and y. when sel=1,
the value of the port a is sent to x and
when sel=0 the value of a is sent to port y.
All the input and output ports are dual-rail
coded.

Figure 7: DeMux Circuit

The CSP description of the circuit is as
follows:
 `READ(sel)
 `READ(a)

 if (sel==1)
 begin
 x = a;
 `WRITE(x)
 end
 if(sel==0)
 begin
 y = a;
 `WRITE(y)
 end

The final circuit produced by the
synthesis tool is shown in figures 8 to 11.

In these figures state-holding elements are
not shown and circuits for generating
InputAck and en are the same as in Figure
3. Note that this circuit is not a pure
combinational circuit and it could store
data.

Figure 8: Input validity checker

Figure 9: x output computation circuit

Figure 10: y output computation circuit

Archive of SID

www.SID.ir

www.SID.ir

Figure 11: DeMux output validity checker

8. Results and Conclusion

TSYN is used to synthesize an Error
Detection and Correction circuit using the
Reed-Solomon codes. The circuit includes
about 40,000 transistors. The synthesis of
an 8-bit Microprocessor is in its final steps.

In summary, our synthesis tool is able to
receive a behavioral description of a circuit
and generate a sized transistor level output.
Due to unavailability of high-level synthesis
tools for asynchronous circuits, our
approach, at the time, is focused on the
practicability of automated asynchronous
synthesis.

References
[1] Al Davis, Steven M. Nowick, “An

Introduction to Asynchronous Circuit
Design”, Technical Report UUCS-97-013,
Department of computer Science,
University of Utah, September 1997

[2] Jens Sparso, Steve Furber, Principles of
Asynchronous Circuit Design – A System
Perspective, Kluwer Academic Publishers,
2002

[3] C.H.(Kees) van Berkel, Mark B. Josephs
and Steven M. Nowick, “Scanning the
Technology : Applications of
Asynchronous Circuits“, Proceedings of
the IEEE, 87(2):223-233, 1999

[4] Alain J. Martin, “Synthesis of
Asynchronous VLSI Circuits”, Caltech,
CS-TR-93-28, 1991.

[5] A. J. Martim, M. Nystrom, K.
Papadantonakis, P. I. Penzes, P. Prakash,
C. G. Wong, J. Chang, K. S. Ko, B. Lee,
E. Ou, J. Pugh, E. V. Talvala, J. T. Tong,
A. Tura, “The Lutonium: A Sun-Nanojoule
Asynchronous 8051 Microcontroller”,

Proceedings of the Ninth International
Symposium on Asynchronous Circuits and
Systems (ASYNC'03), 2003

[6] A. J. Martin, A. Lines, R. Manohar, M.
Nystrom, P. Penzes, R. Southworth, U.
Cummings and T. Lee. “The Design of an
Asynchronous MIPS R3000
Microprocessor”, Proceedings of the 17th
Conference on Advanced Research in
VLSI. Los Alamitos, Calif.:IEEE
Computer Society Press, pp. 164–181,
1997.

[7] A.M. Lines. Pipelined Asynchronous
Circuits. M.Sc. Thesis, California Institute
of Technology, June 1995, revised 1998.

[8] Kamran Saleh, “Asynchronous Design
Using Pre-Synthesized Templates”,
Technical Report, AmirKabir University of
Technology, September 2003.

[9] Arash Seifhashemi, Mohsen Naderi,
Kamran Saleh, Mostafa Salehi, Hossein
Pedram, "PERSIA: An Asynchronous
Synthesis Tool Based on Alain Martin's
Method", CAD Tutorial, 9th IEEE
International Symposium on
Asynchronous Systems & Circuits,
Vancouver, Canada, May 2003

[10] Arash Seifhashemi, Hossein Pedram,
"Verilog HDL, Powered by PLI: a Suitable
Framework for Describing and Modeling
Asynchronous Circuits at All Levels of
Abstraction", Proc. Of 40th DAC,
Anneheim, CA, USA, June 2003

[11] Arash Seifhashemi, H. Pedram,
"Verilog HDL, a Replacement for CSP",
3rd ACiD-WG Workshop FP5, FORTH,
Heraklion, Crete, Greece, Jan. 2003

[12] C. A. R. Hoare, “Communicating
Sequential Processes”, Communication of
ACM 21, 8, pp 666-667, 1978

[13] Alain J. Martin, “Asynchronous
Datapaths and the Design of an
Asynchronous Adder”, Formal Methods in
System Design, Kluwer, 117-137, 1992

Archive of SID

www.SID.ir

www.SID.ir

