
Arc
hive

 of
 S

ID

Line Speed IP Lookup in Software Using
Improved Functional Units*

Hossein
Mohammadi

Behnam
Robatmili

Hamid Reza
Ghasemi

Nasser Yazdani Mehrdad
Nourani

Router Laboratory, ECE Department, University of Tehran, Iran

Emails: {hosm, beroy}@ece.ut.ac.ir, ghasemi@cad.ece.ut.ac.ir, yazdani@ut.ac.ir,
nourani@utdallas.edu

Abstract
 Due to fast increase in line speeds and
number of networks, backbone routers need
fast and scalable IP lookup schemes.
Hardware solutions are fast but, generally,
less scalable than software-based solutions. In
this paper, we present generic hardware units
to accelerate the IP lookup in software.
Experimental results show that using DMP-
Tree data structure for IP lookup, more than
30% improvement can be obtained by adding
simple instructions to the running processor
without any special customization. Our
hardware units embedded in software-driven
environment (i.e a generic processor) can
accelerate other packet processing operations
such as parsing, quality of service (QoS),
filtering and classification.

Keywords
DMP-Tree, Hardware Acceleration, IP
Lookup, Packet Parsing, Packet Processing

1. Introduction
1.1 Motivation and Contribution
 Routers forward IP packets to next hops
based on the incoming packets’ destination
addresses. Classless Inter-domain Routing
(CIDR) has made this job very challenging
since a packet destination address must be
matched with the existing networks’ addresses.
Network addresses are in the form of IP
prefixes. Consequently, to forward a packet,
the destination address has to be matched with

* This research work is partially supported by Iran

Telecommunication Research Center (ITRC).

prefixes in the routing or forwarding tables of
routers. Performing fast IP lookup is a serious
challenge due to fast increase in line speeds
and routing table sizes. For instance, in a line
with 10Gbps rate and assuming a minimum
packet of 64 bytes length, we have only 51
nano seconds to do the match and determine
the output link. Meanwhile, any solution to
this problem can enable us to provide a fast
solution to the more challenging problems of
packet filtering and classification. Packet
forwarding which is based on IP lookup,
filtering and classification constitute the most
challenging tasks facing designer of today
network processors.

In most of the previously proposed methods,
the major bottleneck is the memory access
time. In hardware-based solutions, this
problem can be avoided by increasing memory
bus bandwidth. Hardware-based solutions are,
usually, less flexible and scalable. Software-
based methods are performing better regarding
these aspects. However, memory access can be
a serious bottleneck in the most of software-
based methods.
 In this paper, we modify functional units of
a typical RISC processor to add some simple
and wisely selected instructions to take
advantage of reducing time needed to perform
computationally time consuming packet
processing jobs. We show that adding these
new instructions help every IP lookup method
in general and DMP-Tree (Dynamic M-way
Prefix Tree) software-based IP lookup [1],[2]
in particular. Implementing these instructions
is easy and feasible in high speed processors
with a minimum overhead.
 A brief review of proposed IP lookup
methods follows. In section 2, we briefly

www.SID.ir

Arc
hive

 of
 S

ID

discuss DMP-Tree software-based IP lookup.
In section 3, we propose the new instructions
and do IP lookup using them. Simulation
results of IP lookup with new instructions
come in section 4. In section 5, we explain
implementation method and results of
synthesizing new instructions and functional
units in hardware. Finally, section 6 concludes
the paper and discusses the future work.

1.2 Related Works
 Proposed methods for IP Lookup can be
categorized based on the platforms and data
structures. Hardware solutions like [10], [18],
[12] are fast but less scalable and sometimes
require a long update time [10], [11].
Flexibility and scalability to large routing
tables are essential to lookup approach.
Proposed software lookups, which uses trie
and its variations like LC-Trie [9], Patricia [6],
Multibit-Trie [8], are slow due to multiple
memory accesses. Lulea method [5]
compresses trie efficiently regarding to
common prefix lengths. This method is fast
but it is restricted. Therefore, it cannot scale to
large routing tables while not supporting
incremental updates, since each update
requires building the whole trie structure.
Some works like [4] combine hash with trie-
based data structures. However, since no
perfect hash function exists to do IP lookup
efficiently for all possible routing tables, these
methods are dependent on distribution of the
prefixes. Tree-based methods like [7] seem to
be better but it is difficult to accelerate them
efficiently with hardware assistance. The
reason is that their computational tasks are too
complex to be added as simple instruction.
 Accelerating software-based IP lookup
methods with hardware support can be
effective if we have enough computational
work comparing to memory access time. In
such cases, two different approaches can be
used. First, lookup can be accelerated by
adding complex memory-driven instructions to
take advantage of overlapping memory access
time with computation time. Second,
computational tasks are speeded up by adding
simple and general computational instructions.
We took the first strategy in the HASIL
method [3]. The result is a scalable software-
based IP lookup, which was accelerated by
adding two instructions that modified memory
unit. This approach leads to overlapping two
computational tasks with a memory access. In

this paper we take the second strategy and add
some simple instructions by modifying
functional units of the processor and its
scalability is the same because both of them
use DMP-Tree software-based IP lookup.

2. Review of IP Lookup Using
DMP-Tree
 DMP-Tree, proposed in [1],[2], is a super
set of the famous B-Tree data structure [13],
which brings scalability of B-Tree to the
string-matching problem in general and to
LPM (Longest Prefix Match) in particular.
Like B-Tree, the height of this data structure
reduces by increasing number of branching in
each node. This is called branching factor of
the tree and it is an important parameter to
determine the height of the tree and lookup
time. Our implementation of IP lookup with
DMP-Tree shows that the height of this tree
data structure is proportional to logarithm of
number of entries in base of branching factor.
Figure 1 shows the height of DMP-Tree in
different branching factors. Therefore, the
number of memory access, which is a major
bottleneck in IP lookup, decreases sharply
using this scheme. Another important point
with DMP-Tree IP lookup is that this method
is fairly scalable such that by increasing
routing table size from 100K entries to 1M,
height of the tree just increases by one.
Therefore, lookup time increases very slowly.

Figure 1: Maximum Height of DMP-Tree for a 100K

routing table

 To build a B-Tree like data structure, first,
we need a method to compare and sort items,
here prefixes. To do this the following
definition is proposed in [1],[2] which is the
basis of the DMP-Tree data structure.
Definition 1: Suppose A = a1…an and B =
b1…bm are two prefixes of {1, 0}. Comparing
A and B (i.e. A=B, A>B and A<B) is defined

www.SID.ir

Arc
hive

 of
 S

ID

as follows. If m=n then numerical values of
prefixes are compared to determine which
prefix is bigger. Otherwise, suppose m<n;
numerical values of maa ...1 and

mbb ...1
are

compared. Prefix with larger value is
considered to be larger. If maa ...1 and

mbb ...1
are

identical, then, am+1 is checked. If it is 1 then A
is considered to be bigger otherwise B is
considered to be bigger. ■
 To perform IP Lookup using DMP-Tree,
we have to build DMP-Tree of the prefixes in
the routing table according to Definition 1.
Building method is similar to B-Tree but with
a special construction rule. The rule says that
‘no prefix can stay in a higher level than its
prefix’.

Figure 2: General view of a bucket in DMP-

Tree

 LPM-Search method of DMP-Tree is
expected to find LPM of the incoming packets
destination IP address in order to find its next-
hop. This method is similar to B-Tree search
with just one more step. Fig.1 depicts a general
view of a bucket in B-Tree-like data structures.
A bucket is a node in the tree and contains
sorted elements and pointers to the next level.
There are n prefixes and n+1 pointers in a
bucket. To do LPM-Search, we begin from the
root bucket and compare incoming IP address
with prefixes in the bucket to find Pi, such that
Pi < IP < Pi+1. Then, we try to find LPM of IP
in the current bucket. Finally, the pointer
between Pi and Pj is followed to the next level
bucket. This process continues until following
pointer becomes null (e.g. in a leaf).

2.1. DMP-Based Lookup Algorithm
 The following pseudo-code shows LPM-
Search in DMP-Tree. MaxMatch holds the
latest longest matched prefix. CurrentBucket is
a pointer to the current bucket (node) of DMP-
Tree.

LPM-Search (Input: IP Address)
/* Root is a pointer to the root of DMP-Tree – MaxMatch
contains longest matching prefix found so far*/
 CurrentBucket = Root;
 MaxMatch = *; /* Default Route */

While CurrentBucket ≠ Null do

 Prf = first element in Bucket;
 While PrfixCMP(IP, Prf)==Bigger And Prf ≠

 NULL do
 Prf = Next Prefix;

 Ptr = Left pointer of Prf;
 For each Prf in bucket do

 If Prf matches IP And Prf is
Longer than MaxMatch Then
 MaxMatch = Prf;

 CurrentBucket = Child pointed by Ptr;
End While
Return MaxMatch;

End LPM-Search

Figure 3: DMP-Trees Lookup-search procedure
called LPM-Search

 Updating DMP-Tree is similar to B-Tree
but it requires extra routines like Space
Division, in order to satisfy DMP-Trees special
construction rule. The update process is fast
enough and it supports incremental updates.
Details of DMP-Tree are beyond the scope of
this paper and can be found [1],[2].

2.2. Bottleneck in IP Lookup
 In traditional trie-based methods, memory
access time is the bottleneck since these
methods require many memory accesses and
their computational tasks are few. A few
methods like [7] and [1],[2] exist in which
memory time is less than computation time. In
this paper we use DMP-Tree software-based IP
lookup since we believe this method has
simpler and less computational tasks than
method used in [7].

To become sure about memory effect, we
have implemented and simulated running time
of DMP-Tree software-based lookup and trie
lookup with different memory delays. Figure 4
shows the results of the simulation. In this
simulation we use a routing table of 100K
entries for both trie and DMP-Tree and the
branching factor of DMP-Tree is set to 8 in
order to fit each bucket in a cache line of our
simulation platform.

www.SID.ir

Arc
hive

 of
 S

ID

Figure 4: Lookup time in clock cycles for trie and

DMP-Tree

 The simulation starts from memory delay
of 1 meaning that memory can be accessed in
one cycle of CPU’s clock. This is important
because in the case of very fast memory,
almost the whole lookup time is computation
and software control overhead time. As the
figure shows, this value is 372 for trie and 632
for DMP-Tree. When memory delay increases
trie lookup time increases exponentially but
DMP-Tree software lookup time remains
almost unchanged. This result implies that a
large part of time needed to perform a lookup
in trie is memory access time. In DMP-Tree,
computations take more time than memory
access time and can internally overlap with
memory access. Therefore, increasing memory
delay doesn’t affect DMP-Tree lookup time
and for implementation we need to improve
the computational time.

3. Packet-Driven Instructions
 In this section, we reduce computation time
of lookup methods by asking some simple
supports from hardware to accelerate
frequently executed operations. The first step
is to find out these operations. In the second
step we use the new instructions and perform
IP lookup.

3.1. Processing Tasks and Prefix Format
 Generally, for most of IP packet processing
methods and especially for DMP-Tree
software-based IP lookup, we can highlight
these simple and frequent functions in the
lookup-search procedure (see code of Figure
3):

1. Compare prefixes.
2. Checking matching of an IP address with a

prefix.
3. Extracting some bits from a word.

4. Extracting prefix length from prefix
format.

5. Converting (Value, Length) to the prefix
format.

6. Converting prefix format to (Value,
Length).

7. Bit checking instructions.
 Since adding an instruction requires
complex hardware design process, it is
meaningful to do our best to solve some of the
above needs in software.
 According to the LPM-Search method in
Figure 3; Prefix Compare and Prefix Matching
are two main functions running many times for
each lookup. For instance, in a non-optimized
implementation of DMP-Tree of height 5 and
branching factor of 16, each of these
operations will be executed around 80 times
(height * branching factor). Therefore, our first
step is to optimize these two frequently used
functions. Using ordinary prefix representation
(zero-filled prefix, Length), straight
implementation of Definition 1 to compare an
IP address with a prefix, requires 13
instructions. Therefore, in our example, total
prefix compares for each lookup will take
approximately 1040 clock cycles using the
typical MIPS [19] processor, because the IP
address must be compared and matched with
all prefixes in each bucket. This is too costly
and we need new ideas to do it faster.
 We have solved comparison problem by
defining a new prefix representation format
called Hosm-Format. We have proposed a new
format to represent prefixes. This format
significantly reduces instructions and time
needed for PrefixCompare and PrefixMatch
functions sharply.
Hosm-Format: Prefix can be represented by
adding a zero to its tail, and then filling it with
ones to make its length equal to the biggest
possible prefix length plus one, here 32. (e.g.:
101* represents as 101011….1.)
Theorem 1: Numerical comparison between
prefixes in Hosm-Format is equivalent to
prefix-comparison using Definition 1.
Proof: Suppose A = a1…an and B = b1…bm.
1. If m=n then as Definition 1 offers,
numerical comparison will determine the
result.
2. If m<n, two cases are possible:

2.1. a1…am ≠ b1…bm: Definition 1 says
that prefix with larger substring is bigger.
So, Hosm-Format acts correctly.

www.SID.ir

Arc
hive

 of
 S

ID

2.2. a1…am = b1…bm: In this case, A is
represented as A=a1…am011..1 and
B=a1…ambm+1…bn011..1 in Hosm-Format.
Of course in numerical comparison
between A and B, bm+1 will determine the
result and that is what Definition 1
offers.■

Since we use Hosm-Format to compare a
prefix with an IP address, there are two
concerns. First, what if prefix in Hosm-Format
equals to IP. Second, what we can do with
prefixes of length 32. The solution to the first
concern is that, by assuming maximum prefix
length to be 31, no prefix can be equal to IP. In
the case of equal Hosm-Format
representations, IP should be considered to be
smaller (proof is trivial.). For the second
concern, to keep prefix lengths smaller than
32, we can keep 32 bit prefixes in a simple
jump table and check it first.
 Prefix comparison is the basis of all LPM
search methods. Using Hosm-Format, we can
reduce the prefix compare time to just one
clock cycle since it requires one integer-to-
integer comparison, which is a common
instruction in almost any general-purpose
processors. Therefore, we do not need any
special hardware implementation for prefix
compare. Now we focus on prefix matching
which is also a frequent job in the LPM-Search
process.
Lemma 1: Assume prf is a prefix in Hosm-
Format and IP is an IP address. If

)(322 prfLengthIPprf −<⊕ holds then, prf
matches IP.
Example: Consider prefix 1101* whose length
is 4. Thus, in Hosm-Format the prefix becomes
prf=1101011..1. Assuming IP=1101xx..x then
we have IP ⊕ prf= 0000yy…y < 000100…0.

Proof:)(322 prfLength− is a mask for prefix in
which the bit before Hosm-Formats zero is set.
Therefore, if IP matched the prefix, the result
of XOR will be smaller than mask and if it
does not match, it will not be smaller.■
 Now, we can compare prefixes in one clock
cycle and match them with an IP address using
a straight implementation of Lemma 1, in up to
5 clock cycles. This may be good for a
software implementation but because of time-
consuming match function, it is slower than
hardware implementations with an order of
magnitude. Therefore, we would like to
accelerate this software-based lookup with

some easy-to-implement hardware supports.
Of course, Prefix Matching is the first
candidate to be implemented in hardware.
While using Hosm-Format, implementation of
Prefix Matching with Lemma 2 becomes
straight forward. We discuss the
implementation overhead in section 5.

3.2. New Instructions
 By carefully examining results of section
3.1 and considering general requirements of
packet processing applications (here, IP packet
parsing) we can distinguish instructions
presented in Table 1 to be added to accelerate
the lookup process. These instructions can
generally accelerate any IP lookup process
since they are quite general. Most lookup
methods such as DMP-Tree lookup will be
accelerated since their computational tasks can
fit into the requirements of these instructions.

Table 1: New instructions proposed to be added
 Inst. Function Example Result

ebis extracting
bits

ebis Ra #s #l Rr Rr <= Ra &
MASK[s,l]

ebia extracting
and
adjusting

ebia Ra #s #l Rr Rr<=SHIFT_R
((Ra &MASK[s,l]
),s)

P

A

R

S

E
cbit Check bit cbit R1 #b R2 If b-th bit of R1

then R2 = 1 Else
R2 = 0

cpr create
prefix

cpr Rp Rl RPx RPx <=CreatePref
(Rp, Rl)

vpr prefix
value

vpr RPx Rv Rv <= Value of
RPx prefix

lpr prefix
length

lpr RPx Rl Rl <= Length of
RPx prefix

P

R

E

F

I

X
mpr Match

prefix
mpr RPx Ra
ADDR

If RPx is a prefix
of Ra value then
jump to ADDR

cpr, vpr, lpr and mpr instructions take

Hosm-Format as their prefix representation
format and do operations like prefix matching,
creation, etc. ebis, ebia and cbit are bitwise
operations which do bit extraction and
manipulation.
 The philosophy behind selecting these
instructions for hardware implementation is
that, in most of packet processing applications
(lookup, parsing, classification, etc.) prefix
operations are executed many times. For
example, in packet parsing, all we have to do
is to extract some static or dynamic aligned
fields from an IP packet. These tasks can be
accelerated using our bit-wise operations.

www.SID.ir

Arc
hive

 of
 S

ID

Other examples are: 1) Lookup process in
which prefix-matching and prefix length-
extraction are frequently executed. 2) Prefix-
creation and decoding (converting from natural
numbers to a specific prefix representation
format and vice versa) is frequent in table-
update routines. Therefore, our prefix unit’s
instructions can help generic IP lookup
methods.

4. Simulation Analysis of the New
Instructions
4.1. Prefix Instructions
 Using the new instructions we can simplify
lookup code and gain higher speeds. We have
implemented DMP-Tree lookup method in
MIPS assembly language [20] and we have
simulated its running time with different
memory speeds. Using new instructions we
can reduce code size by 13%. Since this 13%
part of code (matching instruction and length
extraction from a prefix) is frequently executed
during a lookup, lookup time is reduced by
27.44%. Figure 5 compares running results of
DMP-Tree lookup method using new
instructions and without them. It is worth
noting that for DMP-Tree lookup method we
have used mpr and lpr and ebia instructions in
matching phase of the LPM-Search code.
Other instructions may be used in other lookup
methods or in packet processing applications
like parsing.

Figure 5: DMP-Tree Lookup speed with and without

new instructions

 We use mpr instruction to check matching
of an IP address with a prefix and lpr to extract
length of a prefix in Hosm-Format and ebia
instruction to extract next-hop information

from a tree element. As discussed this leads to
27.44% improvement in overall lookup speed.
 As an example we consider a 2.4GHZ
processor with a 333MHZ DDR-RAM. In this
case, memory is 7 times slower than the
processor and according to Figure 5, each
lookup requires 457 clock cycles. It means that
each lookup requires 190ns and consequently
our method can forward 5.26 million packets
per second. Assuming average packet size to
be 2000 bits, this means supporting 10Gbps
(OC-192) lines.
 The improvement that these instructions
can achieve is, of course, limited. The first
reason is that when we develop a software
program, control instructions like loop control
branches and result checking instructions push
a large overhead on system’s behavior.
Another reason is that in the case of DMP-
Tree, the new instructions are only used to
accelerate matching part. However, the while
loop in finding place part of the code (see
Figure 3) which finds the place of the IP
address in the bucket, remains unchanged. We
have not added special instructions to help
DMP-Tree IP lookup in all of its tasks because
we would like our newly added instructions to
remain general enough and useful for a variety
of lookup methods just like DMP-Tree lookup.
Of course adding more complex and
specialized instructions can help DMP-Tree
lookup. For example, instructions added in
HASIL [3] can accelerate DMP-Tree lookup
process with an order of magnitude. However,
those instructions cannot help other lookup
methods.

4.2. Parse Instructions
 Almost all of packet processing applications
run on a network processor need instructions
to create prefixes in a specified format,
comparing and matching them and doing some
bit-wise operations to extract fields. As
discussed in 3.2, in packet parsing application,
all we have to do is to extract some fields from
the IP packet’s header. This requires some
SHIFT, AND, XOR and other instructions
which can be substituted with our bit
extraction instructions (ebis, ebia). Our
implementation showed that using new
instructions reduces code of the IP packet
parsing process about 60% and its running
time about 50%.
 As another example, these instructions can
generally help an IP packet classification

www.SID.ir

Arc
hive

 of
 S

ID

program. Because it also needs instructions to
match prefixes, compare them and doing bit-
wise operations.
 Almost all of Quality of Service (QoS)
methods require bit-wise operations to extract
labels (e.g. Diffserv labels [RFC 3260]) or to
implement efficient queuing mechanisms.
Therefore, our instructions can generally help
QoS methods.

5. Hardware Implementation
In this section, we briefly describe the

overhead due to adding the new instructions in
terms of area and delay. We augmented a
simple 32-bit ALU (Arithmetic/ Logical unit)
with our extra operations to support prefix and
parse instructions. This is illustrated in Figure
6. In this figure, Parse unit and Prefix unit
perform the parse and prefix instructions,
respectively. As can be seen, we have
considered some new signals from the ALU
controller to control operation of these two
additional units. However, to minimize the
overhead and ease of implementation, ALU
and these two units work independently.

Figure 6: An ALU augmented with Prefix and Parse

Units

Our simple ALU provides primary logical

operations (including AND, OR, NOT, XOR,
etc), integer operations (including ADD, SUB,
MULT, etc) and relational operations
(including equality, greater than, etc). It has
two 32-bit inputs (input1 and input2) and an
output (output) of the same size. Our prefix
unit includes five operators which perform the
Prefix operations.

We have implemented the ALU before and
after being augmented with our new units in a
0.25u ASIC (TSMC25) technology. The

behaviors of Parse and Prefix units are written
in VHDL and synthesized using LEONARDO
SPECTRUM 2002 [20]. These units are not
complicated as evident from the list of
instructions in Table 1. Details of these units
are beyond the scope of this paper. Table 2
shows the result of this comparison in terms of
area and critical path delay.

Table 2: The results of the hardware
implementation of Prefix and Parse unit

32 bit
units

Area
(Gates)

Area
overhead (%)

Delay
(ns)

ALU 90105 - 13.32
Prefix 13203 14.65 2.73
Parse 18742 20.8 4.65
Overall 31945 35.45 -

In Table 2, the third column shows the area

overhead of the additional units with respect to
the ALU area. The second and fourth column
clearly shows that these units are not too costly
or slow. Specifically, since ALU and these two
units work in mutually exclusive fashion,
adding such acceleration units can only benefit
the performance, for example during IP
lookup.

6. Conclusion and Future works
 Augmenting RISC processors is a well
known method to build network processors. In
this paper we climbed the first stage. We
identified and added some parsing and prefix
instructions to accelerate packet processing
methods, in general, and packet parsing and IP
lookup in particular. We also showed that
DMP-Tree based software lookup is a good
candidate for simultaneous need to speed and
scalability in IP lookup algorithms. This
method can be accelerated efficiently with our
new instructions. Our method can easily
support routing tables with millions of entries
because tree’s height is logarithmic with
respect to number of routing entries on basis of
branching factor.
 Future works of this research includes
study of packet classification and quality of
service to identify their main computational
bottlenecks and complete the new instructions
to accelerate these applications.

www.SID.ir

Arc
hive

 of
 S

ID

References
[1] N. Yazdani and P. S. Min, "Fast and

Salable Schemes for IP Lookup Problem",
Proc. of IEEE Conf. on High Performance
Switching and Routing, Heidelberg,
Germany, June 2000.

[2] Nasser Yazdani, Hossein Mohammadi, "IP
Lookup in Software for Large Routing
Tables Using DMP-Tree Data Structure"
Proc. of the 9th Asia Pacific Conference
on Communications (APCC) 2003

[3] H. Mohammadi, B. Robatmili, N. Yazdani,
M. Nourani, "HASIL: Hardware Assisted
Software-based IP Lookup for Large
Routing Tables", Proceeding of the 11th
IEEE International conference on
networks (ICON) 2003, pp. 99-
105, Sydney - Australia

[4] M.Waldvogel, G.Varghese, et.al. "Scalable
High Speed IP Routing Lookups”, Proc. of
ACM SIGCOM`97, pp. 25-35, Cannes,
France, 1997.

[5] M. Degermark, A. Brodnik, S. Carlsson
and S. Pink, "Small Forwarding Tables for
Fast Routing Lookups,” Proceeding of
ACM SIGCOM`97 Conf., pp. 3-14,
Cannes, France, 1997.

[6] W. Doeringer, G. Karjoth and M. Nassehi,
"Routing On Longest Matching Prefixes,”,
IEEE/ACM Trans. Net. vol.4, pp. 86-97,
Feb, 1996.

[7] B. Lampson, V. Srinivasan and
G.Varghese, "IP Lookups Using Multiway
and Multicolumn Search”, Proc. IEEE
Infocom`98, 1998.

[8] S. Sahni and K. S. Kim, "Efficient
Construction of Variable-Stride Multibit
Tries For IP Lookup", Proc. of IEEE
Symposium on Applications and the
Internet, SAINT, 2002.

[9] S. Nilsson and G. Karlsson, "IP Address
Lookups Using LC-Tries", IEEE JSAC,
Vol.17, No. 6, pp. 1083-1092, June 1999

[10] N. Yazdani and N. Salimi, "Performing IP
Lookup on Very High Line Speed,", Proc.
of ICT 2002, Shiraz, Iran, 2002.

[11] N. McKeown, P. Gupta, and S. Lin,
"Routing Lookups in Hardware at Memory
Access Speeds", Proc. of IEEE
Infocom`98 Conf., pp. 1240-1247, 1998.

[12] W. E. Chen and C. J. Tsai, "A fast and
scalable IP lookup scheme for high-speed
networks“, Proc. of IEEE ICON99, 1999.

[13] T.Cormen, C.Leiserson, R. Rivest and
Stein, "Introduction to Algorithms", MIT
Univ. Press, 2001.

[14] H. Y. Tzeng, "Longest Prefix Search
Using Compressed Trees", Proc. of IEEE
GlobCom 98 Conf., Sydney, Australia,
1998.

[15] B. Lampson , V. Srinivasan and G.
Varghese , "IP Lookups Using Multiway
and Multicolumn Search", Proc. of IEEE
Infocom`98 Conf., pp. 1247-1256, San
Francisco, CA, 1998.

[16] T. Chiueh, P. Pradhan, "High
Performance IP Routing Lookup Using
CPU Caching", Proc. of IEEE Infocom`99,
1999.

[17] H. Liu, "Routing Prefix Caching in
Network Processor Design" , Proc. of
International Conference on Computer
Communications and networks (ICCCN),
Phoenix, AZ, 2001.

[18] N. McKeown, P. Gupta, and S. Lin,
"Routing Lookups in Hardware at Memory
Access Speeds", Proc. of IEEE
Infocom`98 Conf., pp. 1240-1247, 1998.

[19] D. A. Patterson, J. L. Hennessy, N.
Indurkhya, "Computer Organization and
Design: The Hardware/Software
Interface", 2nd Edition, 1998.

[20] Mentor Graphics’ Leonardo Spectrum
synthesis tool.
http://www.mentor.com/leonardospectrum

www.SID.ir

