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Abstract: Most existing verification tools suffer from having a standard language for design specification.  Although 
most of these tools support standard hardware description languages, but the subset of the HDL they support is very 
limited.  In this paper we introduce a verification tool, which does not have these limitations.  We use symbolic model 
checking to verify a VHDL design.  A Data Flow Graph (DFG) is extracted from the VHDL code, which has been fully 
implemented in object oriented format in C++ and covers about 90% of the synthesizable subset of VHDL.  We use 
Reduced Ordered Binary Decision Diagrams to represent FSM description of a system in terms of transition relations.  
The conversion of DFG to BDDs is done inside the DFG classes.  For the property language, we have used CTL with 
extensions to include event sequence structures and word-level properties.  For these extensions, we have implemented a 
Multi-valued Decision Diagram (MDD) package over an existing BDD package.  The complete package is put into a 
user-friendly environment for automatic verification of FSMs.  We have compared our results with VIS and SMV tools.   

 
Keywords: VHDL, Verification, Model Checking, FSM, BDD, MDD, CTL, Image Computation, 
Reachability Analysis, Coverage 
 
1 Introduction 
 

Formal verification [1], [15] is the process of checking whether a design satisfies some requirements 
(properties).  We have used symbolic model checking method to verify hardware designs.  The overall 
structure of our tool is shown in Fig.1.  As shown, two sets of inputs are required: VHDL design and ECTL 
properties. 
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Fig.1. High level block diagram of model checker structure 

 
To extract an FSM description, the design, modeled in VHDL, must be synthesized to hardware 

elements.  First, the input VHDL code is analyzed into CHIRE [2].  CHIRE is an intermediate object 
oriented C++ format, which has a class for every VHDL construct.  CHIRE classes and VHDL analyzer have 
been implemented in Tehran University CAD group.  
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 This intermediate format is used in most CAD tools which are developed in this CAD group.  After 
that, CHIRE classes are converted to hardware elements such as Gates, Memory elements, Adders, 
Multipliers and Multiplexers.  We call this process “DFG Extraction” or “Generic Synthesis” and that is the 
first major phase of Verification.  In other words, the DFG [3] consists of discrete functions and memory 
elements.  The discrete functions can be conveniently represented by BDDs [4] and its extension MDDs [5], 
[6].  The developed MDD package is a kernel over the CUDD [7], as a BDD package that helps us to 
preserve word-level information of design which can be used to build the atomic formulas in properties.   

 On the other hand, verification of a complete design with standard CTL [1], [8] is very hard and 
some times impossible, because the standard CTL operators are so restricted that we cannot describe all 
specifications of a complete design especially real time systems, communication systems and network 
protocols.  So we have improved CTL operators and model checking algorithms [8] to support these 
specifications.   

 In the rest of paper, we will explain Generic Synthesis of designs in Section 2, and Generic Synthesis 
of property in Section 3.  In Section 4 our verification engine will be discussed and Section 5 presents a case 
study. 

 
2 Generic Synthesis of Design 
 

Synthesis is the first step that should be done to prepare inputs of verification engine.  On one hand 
VHDL code should be converted to DFG.  We will explain the process of conversion as follows. 

 
2.1 DFG Extraction 
 

Since every design that is modeled in VHDL must be synthesized to hardware elements, it is necessary 
to have a tool that can translate the VHDL statements to hardware elements such as Gates, Memory 
elements, Adders, Multipliers and Multiplexers .We call this process “DFG Extraction” or “Generic 
Synthesis“.  As explained, VHDL code is converted to CHIRE and then to DFG. DFG Extraction is the first 
major phase of Verification.  Furthermore DFG Extraction is used in synthesis flow.  Other CAD tools such 
as Synthesis tools and Test tools need a format closer to real hardware instead of language statements to 
implement their algorithms on real designs.   

 

Target Value Condition Other Flags

 
Fig.2. General Data Structure 
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AND OR ADD SUB MUL Equal Less LessEqual

 
Fig.3. DFG Node Structure 

 
In other words, it is necessary that these tools implement their algorithms on hardware elements such as 

Gates, Memory element, instead of VHDL statements.  This data structure (DFG) has been implemented in 
fully object oriented format in C++ and has covered about 90% of the synthesizable subset of VHDL. 
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We consider a design as an array of elements shown in Fig.2.  The first three fields are pointers to graphs 
as shown in Fig. 3.  These structures show a list of graphs that model the design.  One of the advantages of 
this model is its flexibility, since it is possible to add other operators and statements to this model [3].   

As shown in Fig.3 the DFG of a design consists of combinational and sequential classes.  
Combinational classes are Unary operator, Binary operator, Mux and all other classes that are driven from 
these classes.  The Flip-flop class is the only sequential class.  As we will explain later, the BDD 
construction is virtually called inside the child classes. 

3 Generic Synthesis of Property 
 

As with the circuit description, properties need to be converted to parse trees.  The following sections 
discuss this conversion process. 

 
3.1 Standard CTL Formulas 
 

Formulas in CTL [1], [8] are built from atomic propositions, which correspond to variables in the 
model, standard Boolean connectives of propositional logic (e.g., AND, OR, XOR, NOT), and temporal 
operators.  Each temporal operator consists of two parts: a path quantifier ( A or E ) followed by a temporal 
modality ( F , G , X ,U ).  All temporal operators are interpreted relative to an implicit current state.  There 
are in general many execution paths (sequences of state transitions) of the system starting at the current 
state.  The path quantifier indicates whether the modality defines a property that should be true of all those 
possible paths (denoted by universal path quantifier A ) or whether the property needs only hold on some 
path (denoted by existential path quantifier E ).  The temporal modalities describe the ordering of events in 
time along an execution path and have the following intuitive meaning:  

φF  : (reads φ  holds sometime in the future) is true of a path if there exists a state in the path where 

formula φ is true.   

φG  : (reads φ  holds globally) is true of a path if φ is true at every state in the path.   

φX  : (reads φ  holds in the next state) is true of a path if φ  is true in the state reached immediately 

after the current state in the path.   
ψφU  : (reads φ  holds until ψ  holds, called strong until) is true of a path if ψ  is true in some state in 

the path, and φ  holds in all preceding states.   

 
3.2 Extended CTL 
 

The basic temporal operators presented above can be combined to give quite complicated properties.  
However, writing such properties is sometimes cumbersome and reading them can be difficult and some 
times impossible.  As mentioned in the previous section, we have improved the standard CTL to support all 
specifications that a designer can imagine for his or her design.  Also in our extended CTL, writing 
properties is user friendly and more abstract.  In the following subsections we introduce the extensions that 
we have added to the standard CTL. 

Regular Expressions in Extended CTL.  As we have described above, writing some properties in the 
standard CTL is difficult.  For instance, consider the following property: 

1))));(ackin AX  0)((abortin AX    1)((ackout AX  1)((reqinAG =⇒=⇒=⇒=                          (1) 

 
It states that if signal reqin is asserted, then if in the next cycle, signal ackout is asserted, then if in the 

following cycle signal abortin is not asserted, then starting at that cycle, signal ackin is asserted.  In new 
extended CTL we provide an alternative way to reason about sequences of values which is in many cases 
more concise and easier to read and write.  It is based on an extension of regular expressions, called CTL 
Extended Regular Expressions, or CEREs. 

A CERE provides an easy way to string together sequences of Boolean expressions over time.  The 
simplest CERE is built from an open bracket ({), a series of Boolean expressions separated by commas (,), 
and a close bracket (}).  Thus, the CERE f of Equation (2), describes a sequence in which reqin is asserted 
in the first cycle, ackout in the second cycle, abortin is not asserted in the third cycle, and finally ackin is 
asserted. 
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ackin},abortin  !,ackout  ,{reqin                                                (2) 
 
3.3 CTL Formula Conversion (Universal formula to Existential formula) 
 

For a universal CTL formula all states in a design that are reachable from the initial states should be 
checked.  However for an existential CTL formula only one case from the initial states should be found that 
satisfies the formula.  It is clear that algorithms of existential CTL formula can be implemented easier than 
universal CTL formula, so universal formulas are converted to existential formulas.  That is, all universal 
path quantifiers are replaced with the appropriate combination of existential quantifiers and Boolean 
negations.  Also "finally" operators are converted to "until" operators.  This returns a new formula that 
shares absolutely nothing with the original formula (not even the strings).  The "original Formula" field of 
each new sub formula is set to point to the formula passed as an argument.  In addition, if and only if the 
original formula is of type AG, AX, AU, AF, or EF, the "converted flag" is set.   

These conversions are as below: 
 

)( fTRUEEEFf U⇒  
)(!! fEXAXf ⇒  

)](!([! fTRUEEAGf U⇒  
)](![! fEGAFf ⇒  

)!)])*!(![!((!)( gEGgfgEgfA +⇒ UU

 
With these conversions we will have only existential CTL operators and our algorithms are only for 

existential formulas.   
 

 
4 Verification Engine 
 

Fig.4 shows a block diagram of our verification engine.  This figure shows that the engine includes five 
blocks.  Inputs of engine are DFG and Parse Tree.  Initial State block, computes initial states of system 
which are required to compute reachable states and make Pass or Fail decision.  Reachable States is another 
block in this figure which computes reachable states based on image computation [9], [12].  Image 
computation is the process of finding all the successors of a given set of states S according to a set of 
transitions T.  Pre-image computation, on the other hand, is concerned with finding the predecessors of the 
given states.  In symbolic image computation, the sets of states and the transitions are represented by 
Boolean formulas, which are manipulated in the form of Binary Decision Diagrams (BDDs [3]). 

 

Reachable States

Initial State

Symbolic Model
Checking

Pass/Fail Module

States that
satisfy property

Yes/No

DFG

ParseTree

Transition
Relation

 
Fig.4.  Block Diagram of verification engine 

 
Symbolic Model Checking block computes the states that satisfy the property with respect to reachable 

states.  The property is accepted as a parse tree which was explained in section 3.3.  Pass/Fail checking is 
the final step which is done by Pass/Fail Module.  A formula passes if it is true for all initial states of the 
system.  It should be noted that all of above blocks use BDDs as their base data structure. 
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4.1 Symbolic Model Check Algorithms 
 

With respect to the formula type, a special function is called inside Symbolic Model Checking block.  
This function computes the states that satisfy formula and returns them in form of BDD (Binary Decision 
Diagram).  A system satisfies a formula if all its initial states are in the satisfying set of the formula.  Hence, 
we do not need to continue the computation if we know that all initial states are in the satisfying set, or if 
there are initial states that we are sure are not in the satisfying set. The early termination supplies an extra 
termination condition for the fixpoints that kicks in when we can decide the truth of the formula.  A 
computation that has terminated early does not yield the exact satisfying set, and hence we can not always 
reuse this result when there is sub formula sharing. 

The process of computing satisfying states is different with respect to formula type.  Each of these 
algorithms is explained in subsequent sub-sections.   

Checking Atomic Formula. Static semantic check of atomic CTL formula is performed on DFG.  
Specifically, given an atomic formula of the form LHS=RHS, check that the LHS is the name of a 
latch/wire/input/output in the DFG, and that RHS is of appropriate type (enum/integer/bit) and it lies in the 
range of the latch/wire/input/output values.  This function returns a BDD corresponding to this atomic 
formula, if LHS is not input.  Otherwise, If LHS is an input, after the construction the BDD of LHS = RHS, 
transition relation is restricted with this BDD, and bdd_one is returned. 
Checking EX Formula.  In this stage states satisfying EX target are computed.  Basically, pre-image 
computation function is called with target as a parameter.  Output of this function is desired states in form of a 
BDD structure.  The pseudo code of this algorithm is as follows: 

 
Procedure EvalEXFormula(T ,S, p)  
{ 
   Return ImageComputeBwd(T,P); 
} 

 
Checking EG Formula.  In this stage states satisfying EG invariant are computed.  Conceptually, this is 
done by starting with all states marked with the invariant.  From this initial set, recursively states which can 
not reach through paths entirely within the current set are removed.  This is done by iteratively computing 
next states of current set, and ANDing them with current set.  This loop will be iterated until one of the 
following three conditions is satisfied: 

fixed point : when in two successive iteration of “while loop” two  BDD’s become equal, then fixed 
point has been happened .   

tautology: if the result BDD in one iteration of “while loop” becomes bdd_one,  then property is 
satisfied in design.  This is what tautology means. 

early termination: early termination happens when all initial states are in the satisfying set, or  there are 
initial states that we are sure are not in the satisfying set. 

The pseudo code of this algorithm is as follows: 
 
Procedure EvalEGFormula(T ,S, p, y)  
{ 
  y’ = p ∧  EvalEXFormula(T,S, y);  
  if (y’ = y)  
  return y ; 
  else  
  return EvalEUFormula(T,S, p, q, y’ );  
} 

Checking EU Formula.  In this stage, states that satisfy E(invariant U target) are computed.  Start with 
“target AND fair states”.  The states that are satisfying target are computed in this step.  Then pre-image 
computation of these states is done and the states that do not satisfy the invariant condition are removed from 
these states.  Then these states are added to the current set and this process will be iterated until one of three 
conditions (fix point, tautology, and early termination) is satisfied.  The pseudo code of this algorithm is as 
follows: 

 
Procedure EvalEUFormula(T ,S, p, q,y)  
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{ 
   y’ = q ∨  (p ∧  EvalEXFormula(T,S , y)) ; 
   if (y’ = y)  
        return y ; 
   else  
       return EvalEUFormula(T,S, p, q, y’ ) ; 
 } 

Checking Regular Expressions. To evaluate this type of formula that is expressed as {p, q, …, r}, the 
following steps should be taken: First the states that are satisfying the last atomic proposition (hence r) are 
found.  Then EvalEXFormula is applied to these states to find their pre-image states.  Then the states that do 
not satisfy the next to last atomic proposition are removed.  This process is iterated until it reaches the first 
atomic proposition.  The pseudo code of this algorithm is as follows: 

 
Procedure EvalSEQFormula(T, S, p,q)  
{ 
    y’ = CheckAtomicFormula(T,p); 
    y”= EvalEXFormula(T,S,y’); 
    return( y” ∧  CheckAtomicFormula(T,q)); 
 } 

 
4.2 Pass/Fail Module 
 

A formula passes if it is true for all initial states of the system.  Therefore, in the presence of multiple 
initial states, if a formula fails, the negation of the formula may also fail.  But if the number of initial states 
is only one, we can say that if a formula fails, the negation of the formula also fails.  As explained in the 
previous section, there are some other conditions that show the pass/fail of a property.  These conditions are 
checked inside Symbolic Model Checking Module. 

 
5 Case Study 
 

To verify of our algorithms and our structures we used the controller part of a simple processor, 
SAYEH.  We verified this controller by our new extended CTL.  The architecture of this processor is simple, 
but it has enough hardware for our work in formal verification and test and testability research.  The 
processor has a 16-bit data bus and a 16-bit address bus.  The processor has 8 and 16-bit instructions.  Short 
instructions may contain shadow instructions, which effectively pack two such instructions into a 16-bit 
word. 

The controller of SAYEH has five states: reset, halt, fetch, decode, and exec.  External signals 
ExternalReset and instruction control transitions between states of this state machine.  The state machine of 
SAYEH controller is shown in Fig. 5. 

 

Decode Exec

Fetch Halt

Reset

 
Fig.5. State machine of SAYEH Controller 

 
With our new extended CTL, all properties of this state machine are written.  These properties are in 

three classes.  With these three classes that are explained below, each state machine will be completely 
verified.  The three classes are as follows: 
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The first class of properties should be checked for all states.  This class is divided into three sets of 

properties: 
•  “There is no deadlock in any state”.  This property is expressed in ECTL as Equation (3). 

},,,{
)!()((

execdecodefetchresetS
SPstateEXSPstateAG

∈∀
=→=                                                        (3) 

•  “States are reachable from the initial state (reset)”.  This property is presented in ECTL as 
Equation (4). 

},,,{
)(

execdecodefetchresetS
SPstateAF

∈∀
=                                                               (4) 

 
•  “Each state is reachable from any state”.  This property is shown in ECTL as Equation (5).                      

)!()(( resetPstateEXexecPstateAG =→=                                             (5) 

The second class of properties is different from one state to another.  In this class of properties 
“immediate states after each states” are checked.  For example: 

)!()(( resetPstateEXexecPstateAG =→=                                              (6) 

The third class of properties is to check transitions between states with respect to the input signals and 
instructions.  This class of properties cannot be verified by VIS [11], because VIS can only have atomic 
formulas with LHS of kind constant or latch variable.  For example: 

)!(
)1Re&((

resetPstateAX
setExternalexecPstateAG

=
→==                                             (7) 

As explained, ECTL supports event sequence properties.  Since most FSMs are designed to detect some 
sequences, this class of properties is very useful to verify an FSM in many cases more concise and easier to 
read and write.  For example in this FSM, the valid sequence is shown in Equation (8). 

exec} decode, fetch, {reset,                                                                          (8) 

Using the new extended CTL we can check this property with CERE.  While the standard CTL does not 
offer any way of representing this property.   

 
6 Experimental Results 
 

We have verified the SAYEH processor with VIS [11] and SMV [14] tools.  In general, our tool has 
several advantages.  Problems with these tools are in both design and properties parts.  The SAYEH 
processor has a behavioral multiplier unit that VIS does not support and we had to describe the multiplier at 
the gate level.  Also SMV has its specific non standard language for describing designs.  On the one hand, 
learning and using this language is a burden for new users, and on the other hand, this language has 
limitations that make design description difficult.  Converting the description of SAYEH from the original 
VHDL or Verilog code to the input of SMV was a time consuming job.   

We encountered difficulties in verifying the SAYEH controller using property languages of VIS and 
SMV.  As explained before, some properties are supported by our ECTL but are not supported in CTL.  For 
example, the third class of properties and event sequence properties that are stated in Section 5 are not 
applicable to VIS and SMV.  Therefore we were unable to check if transitions between states are done 
appropriately with respect to the value of the FSM input variables.  Also, for event sequence properties, we 
had to breakdown these properties to several smaller properties.  For example, event sequence property of 
Equation (8) is converted to Equation (9) that is supported by VIS and SMV.  In addition to above problems, 
checking Equation (9) is more expensive than Equation (8) in terms of time and memory usage.   

))));(Pstate AX  )((Pstate AX    )((Pstate AX  )((PstateAG execdecodefetchreset =⇒=⇒=⇒=                       

(9) 
 

7 Conclusion 
 

Supporting synthesizable VHDL as the input format and extending CTL property language for 
improving coverage of symbolic model checking, are the main advantages of our symbolic model checker.  
We have added word-level data structures and improved our property language for better verification of 
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designs.  Also having an abstract and easy to learn language for properties is important.  We are working on 
GUI language interface for our property language so that the details of the properties will be hidden from 
the users. 
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