

Blood Cadmium level of Iranian zinc miner E. Mohajeri¹

Abstract:

Toxic metal Cadmium (Cd) is playing the major role in environmental health threats and appear to be seriously affecting the mine workers' health . In the present study , the concentration of toxic heavy element Cadmium in Zinc mine worker's blood was determined .

Flameless Atomic Absorption Spectrometery were used for Cd measurment. The results indicated that in 100% of the workers ,the concentration of Cd in blood is more than the standard value recommended by WHO which causes several deases in most of the workers. The average concentration of Cadmium in the blood samples in this study has obtained .62 ug/dl .

Key words: cadmium, blood, Iranian zinc miner

www.SID.ir

¹⁻ Islamic Azad University- Karaj Branch

Introduction

Poisoning caused by industrial exposure or environmental contamination by heavy metals is of great concern [1,2]. Cadmium is probably the most biotoxic element and are therefore regarded as priority pollutant [3,4]. Heavy elements especially the cadmium when absorbed into the body, mainly through food, water intake or inhalation, can injure the renal, pulmonary, skeletal, testicular and nervous systems [4,5,6]. Because the kidneys accumulate cadmium selectivly, renal failure is often the earliest and most sensitive end-point. Cadmium also impaires normal fetal development and there is an evidence that it causes cancer [7,8,9,10]. A significant trend for a risk of lung cancer was found only for exposure to cadmium received in the presence of Arsenic-trioxid [8]. Poisoning from inhalation of cadmium vapor or dust is generally limited to occupational settings, which can be fatal. The Lethal dose is a product of the exposure duration and concentration. It causes the destruction of the lining cells of the lungs, as a result, pulmonary failure is the ultimate result of Cadmium inhalation poisoning. Chronic inhalation also injures liver and kidneys [9,10,11,12,13].

Industries with known occupational exposures like Zinc and Lead melting are also the source of environmental exposure of Cadmium . Acute toxicity from inhalation of this element can produce serious illnesses , particulary in the lungs and GI-tract respectively [14,15,6]. Unlike other heavy metals such as mercury and Lead , cadmium occur in only one valence state +2 , and does not form stable alkyl compounds or other organometallic compounds of known toxicologic significance . Thus , it is elemental cadmium that is the toxic agent [6] .

To determine the Health effects of this heavy toxic element, the concentration of Cd was determined in the blood samples of the workers in a Zinc and Lead mine in Iran.

Exprimental

Apparaturs: Many procedures for the analysis of blood for individual metals have been reported .

All the elements are extracted at the PH of blood with either ammonium pyrrolidine dithio carbamate (APDC) or sodium diethyl dithiocarbamat (SDDC) since the extractions are reported to be efficient over a broad PH range for most metals [16]. As it will be described later, SDDC, triton x-100 and MIBK were used for the metal extraction from the blood samples. A flameles atomic absorption spectrophotometer mark Varian GTA, with a recorder readout module and strip chart recorder was used for Cd measurement. A vortex mixer was used for all stiring. Samples were centrifuged in an international standard centrifuge.

Reagents and procedure: Reagent grade chemicals were used throughout the experiments. Stock metal solutions were prepared by determinate weighing of salt to give a concentration of 1000 ppm of the element. All solutions were made 0.1% in Nitric acid .Standard working were prepared by appropriate dilutions of the stock solutions. The methyl isobutyl ketone (MBIK) was used without further purification. The triton x-100 was from Baker. The sodium N-N-diethyl dithiocarbamate was a 28% aqueous solution obtained from K&K. Laboratories, Inc.Five milliliter of whole blood treated with Heparin as anticoagulant are pipetted into a 100 mm.10mm test tube. One milliliter of a solution containing 2% SDDC and 5% triton x-100 is pipetted into the blood. The solution is mixed on a vortex mixer for 10 second, the left standing for ten minutes for complete hemolysis of the blood to occur. Three milliliters of MIBK are pipetted into the tube which is then stoppered with a polyethylene stopper and

www.SID.ir

shaker gently. The solution is centrifuged at approximately 1200 rpm for five minutes. The MIBK layer is aspirated directly into Atomic absorption Apparature and the absorption percentage recorded. Water satureited MIBK is used to set 0% absorption [11].

Results and Discussion

To determine the effects of heavy toxic element Cadmium on the health of a zinc mine workers, the applicability of this analytical procedure to determination of element Cadmium was investigated. 55 blood samples were taken from the workers of a zinc and Lead mines ,in the western part of Iran .Table 1 shows the concentration of Cd in the blood sample of some workers. Cadmium concentrations determined in 55 blood samples were relativelyhigh, ranging from .13 to 1.5 µg/L. As many as 50% of the participants had a blood cadmium concentration lower than .61 µg/L ,whereas in 38% of participant it was between .6 to 1.2 µg/L and also in 2% it was up to 1.2 μg/L. The median concentration of blood cadmium was .61 μg/L (interquartile range, 1.3-2.6; 10th-90th percentile, 4.2-8.7) .The average concentration of Cadmium in the blood samples of the zinc workers is .62 \(\sigma g / L \), which is 5 folds than the reference value indicated by Tietz (1999) [12] .This reference value is .12 \(\sqrt{g} / L \) .Figure 1 shows the comparison of Cadmium concentration in the blood sample of some workers with standards value [12]. The results of this study indicate the higher concentration of cadmium in blood sample of zinc mine workers, than standard level in western Iran .Most of the worker with higher exposure to these elements has bone kidney liver and GI-illnesses. It is highly recommended that the worker in this facility use personal protective measures to avoied contamination of toxic elements in the body .Health and safety measures in the facility by the regulated health care of the workers and installation of control equipments for the air and water control is also recommended.

References

- [1] J.o.Niago , A silent epidemic of environmental poisoning , Environ Pollut , 50 , 134-161 (1988).
- [2] WHO, Cadmium Environmental health criteria 134 Geneva world health org (1992).
- [3] L.Frieberg, G.F.Nordberg and V.B.Voux, hand book on the toxicology of metals, vol 2, Elsevier Newyork, (1986).
- [4] T.Aifven, L.Jarup, C.G.Elinder, Cadmium and lead in blood in relation to low bone mineral density and tubular proteinuria, Environ Health Perspect, 110, 699-702 (2002).
- [5] T.Berg and D.Licht, International legislation on trace elements as contaminants in food: a review Food Additive, Contam, 19, 916-927 (2002).
- [6] ATSDR / EPA pirority list for 2001 : Top 20 Hazardous Substances , Agency for Toxic Substances and Desease Regestry as Department of Health and Human Services , www.atstdr.cdc.gov/list html .
- [7] WHO, Regional office for Europe, Copenhagen, Denmark, (2000).
- [8] M.P.Waalkes, Cadmium carcinogenesis, Mutat Res., 533, 107-120 (2003).
- [9] L.Hellstrom , C.G.Elinder , B.Dahlberg , M.Lundberg , L.Jarup $\,$, B.Peersson et al , cadmium and end-stage renal disease , Am J. kidney Dis ., 38 , 1001-1008 (2001) .
- [10] C.Burbur , JP.Buchet , A.Bernard , A.Leroyer , C.Nisse , JM.Haguenoer , Biomarkers of renal effects in children and adults with law environmental exposure to heavy metals , J.Toxicol Environ Health ., A66 , 783-798 (2003) .
- [11] Dc.Pashal , B.G.Ting , J.C.Morrow , Y.I.Pirkle , R.Y.Jackson , Trace metals in urine of u.s.resident References range concentration , Environ . Res., 76, 114-230 (1988) .
- [12] "Tietz" CA.Burtis and EA.Ashwood, Tiets Textbook of Clinical Chemistry. 3d Ed. W.B.Saunders, Philadelphia, (1999), The standard reference for clinical chemistry.

- [13] Occupational Safety and Health Administration (1992) . OSHA 24 CIR :1910-1127 section 1-Medical surveillance Washington (DC) :OSHA
- [14] World Health Organisation . Human exposure assessment . Geneva: WHO; 2000 .
- [15] K.Hoffmann , C.Krause , B.Seifert , The Grman Environmental Survey 1990/92 (GerESII) : primary predictors of blood Cd level in adults . Arch Environ Health ., 50 , 74-379 (2001) .
- [16] M.Stoeppler , K.Brandl , Determination of cadmium in whole blood and urine by electrothermal atomic absorption spectrometry , Fresenius A , 372- 380 (1990) .

Table 1: The concentration of Cadmium in the blood sample of some Iranian Zinc mine workers' blood

code	Cd								
Code	Ug								
	_		-		-		_		_
	/dl								
1	0.53	11	0.39	21	0.45	31	1.2	41	0.42
2	0.45	12	0.66	22	0.51	32	0.69	42	0.87
3	0.72	13	0.66	23	0.45	33	0.6	43	0.72
4	0.62	14	0.45	24	0.39	34	0.66	44	0.96
5	0.84	15	0.45	25	0.42	35	1.2	45	0.66
6	0.42	16	0.54	26	0.6	36	0.87	46	0.57
7	0.66	17	0.51	27	0.45	37	0.45	47	0.72
8	0.72	18	0.69	28	0.36	38	0.13	48	0.69
9	1.1	19	0.84	29	0.6	39	0.72	49	0.72
10	0.45	20	0.54	30	1.5	40	0.87	50	0.6

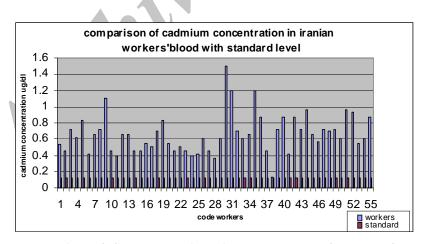


Fig 1: the comparison of Cd concentration with standard level for some of the workers