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Correlation ranking procedurefor factor selection in PC-ANN modeling and application
to aqueous Solubility evaluation
A. Najafi**, S. Sobhan Ardakani?

Abstract:

A correlation ranking procedure is proposed foesibn of factors in principal component-artificial
neural network (PC-ANN). The model was applied he fiqueous Solubility (-logS) evaluation of
diverse Organic moleculeExperimental values for the observed -logS valwesofganic molecules
can range fronabout -0.380 (oxalic acid) to 10.410 (2,2',3,3,%,6,6'-PCB) -log units. Ten different
Shindices were calculated for each molecule. Prinicgmmponent analysis of the Sh data matrix
showed that the seven PCs could exp@&ir97% of variances in the Sh data matrix. Theaeitd PCs
were used as the predictaariables (input) for PCR and ANN models. The ANMNdal could explain
97.63% ofvariances in the solubility data, while the valugtained from PCR procedures were
84.27%. For the PCR studies, the data set wasathiitto a training set of 32tbmpounds for model
building and an external prediction set.of 60 comuis for modelalidation. Both subsets were
chosen to ensure that a diverse set of compounslpresent. For the ANN studies, a cross-validation
set of 50 compounds was choskrgving 270 compounds in the training set, andpttegliction set
remained the same. Models to.predict the solukigigonstructed using PCR aR€-ANN with errors
comparables to the experimental errors of the dalullata. Theroot mean-square-errors (RMS-
error) associated with the calibration, predictiandvalidation set compounds used for the PC-ANN
model were 0.314, 0.450, and 0.314 -lag8s, respectively.
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1. Introduction

The aqueous solubility of organic compounds israpartant molecular property, playing a
large role in the behavior of compounds in manyasref interest. In modeling the environmental
impact of a contaminant, along with the soil-watbsorption coefficient, the solubility is a keynter
in the understanding of transport mechanisms astdlalition in groundwater [7, 10, 11].

Quantitative structure property relationships (QpPRathematical equations relating
chemical structure to the physicochemical propgrtiave information that is useful for environment
chemistry [17-19]. A major step in constructing SAR/QSPR models is to find one or more
molecular descriptors that represent variatiorhadtructural property of the molecules by a number
Topological Indices (Tls) are a convenient meangaislating chemical constitution into numerical
values, which can be used for correlation with palproperties and biological activities.

2. Material and Methods
2.1. Aqueous Solubility Data

The data set of aqueous solubility of diverse dig@empounds in the present study was
recompiled from several literature sources. Thelfiget of 380 diverse organic compounds was
representative for all classes of organic compowwistaining C, H, O, N, Cl, Br, and |, and
included saturated and unsaturated hydrocarbolmgdreated hydrocarbons, polychlorinated
biphenyls (PCBs), esters, aldehydes, organic acild®hols, ethers, amines, and aromatic
compounds. In this list, the experimental -logSueal for organic compounds can range from

about -0.380 (oxalic acid) to 10.410 (2,2',3,3;3,6,6'-PCB) log unitfl2, 14, 15, 20, 21].
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Figure 1. Histogram of the distribution of the experimentab$S for the total data set of 380 organic compuizun

used in this study. The solid curve is the fittofghe -logS data to the normal distribution.
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2.2. Sh Topological Indices

Ten different Sh topological indices (Sh1l — Shil@yawvcalculated for each molecule based on
the different combinations of the distance sum aadnectivity vectors. The theoretical basis for
calculation of these indices is found in our pregipapers [8, 13, 22]. A home-made program (written
in MATLAB environment) calculated the Sh indicesielcalculated indices were collected in a data

matrix with 3810 dimension. Each chemical is now a point in thalimensional spacé*°

2.3. Linear Modeling: Principal Component Regression

Due to the some co-linearity between the Sh topcébgndices, orthogonal transformation of
the Sh indices by principal component analysis pe$ormed. The score and loading matrices were
calculated by singular value decomposition (SVIcpdure [2]:

D=USV’" (1)
whereU andV are the orthonormal matrices spanned the resgentiw and column spaces of the
data matrix D). S is a diagonal matrix whose elements are the squam of the eigen-values. The
superscript “T” denotes the transpose of the mafrhe eigen-vectors included I are named as
principal components (PC). The PCs of the valida(i®,) and Prediction§,) sets were calculated by
the equation:

Upy =Dpiy S*V 3]
Application of the PCA on the Sh indices data mateisulted in 10 factors or principal components
(PC-PCy). A linear regression model was build betweenslebility and resulted factors. The best
set of factors was selected by the eigen-valueimgnleV) and correlation ranking (CR) procedures.
In the EV-PCR procedure, the PCs were entered éoPBR model consecutively based on their
decreasing eigen-value. Once each new factor waseehto the model, the model performances were
evaluated by the leave-one-out cross-validation@LCV). In the CR-PCR, the correlation between
each one of the extracted PC’s with the solubditya was determined first. The stepwise entrance of

the PCs to the PCR model was based on their daugeasrelation with the solubility.

2.4. Nonlinear Modeling: PC-ANN

To model the -logS-Sh indices more accurate, adifineural network was employed to
process the nonlinear relationships between thecteel PCs in the previous section and solubility
data. The PC-ANN model was the same as we reppraxabusly [3, 9]. The totals of 380 compounds
were randomly divided to 270 calibration (or tram) samples, 60 prediction samples and 50
validation samples. The PCs of the calibration dampere calculated by equation 1 and those of
prediction and validation samples were calculatgdequation 2. The prediction set is a subset of
compounds used to help find an optimal set of wsigimd biases during ANN calibrating, and it is
also used to avoid overtraining of the ANNe ANNs used in this study were fully connectédeé
layer, feed-forward ANNThe number of neurons in the input layer is eqoathe number of PCs
selected for the model. The PC’s used here weethelected by the CR-PCR and EV-PCR models.
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The transformed values are then passed to therhidgter. The input value of a hidden layer neuron
is the summation of the products of the weightsifoe connections) times the corresponding outputs
of the previous input layer plus a bias terilne ANN model confined to a single hidden layer,

because the network with more than one hidden lageitd be harder to train.

3. Results and discussion
3.1. PCR Modeling

For each subset of molecules separate PCR modsésl lem the eigen-value ranking and
correlation ranking were obtained. The results ioleth by the correlation ranking procedure are

shown in Table 3.

Table 3. Linear multivariate regression models and statititarameters of compounds properties using PC

indices.

Subset N Equation R? SE RMS REP F Ry

CH 133~ —109S=4.112+1.306 RE 0.641 PG-0.354 . 49555 (455 0440 1070 192 0.9068
PC,—0.27¢ PC, +0.235 PC,— 0.14€ PCo +

0 64 —10gS =1.313+0.927 PG-0.168 PG-0.166 * 593165 (142 0132 1004 367 0.9709
PC, +0.107 PCg—0.07% PC, +0.071PCy +

N 9 —l0gS =1.918 + 0.851 PCr 0.0.190PG-0.263 9578 (321 0240 1248 21 0.7614
PC,

Halogen 124  109S=3.970+2121PCG0518PG-0.323 449413 (572 0555 610 312 0.9284
PCy—0.265 PCq +0.18 PCs +0.116PC g

Overall 50  ~1095=1.792+1026 RG 0.358 P6= 0304 (8565 (0500 0469 26147 52  0.7974

PC,— 0.18( P — 0.171 PG,

Total 380 —logS = 3.237 + 1.344 PG- 0.993 PG~ 0.636
PCc + 0.49¢PC .4+ 0.40% PC5— 0.29¢ PCo —

0.8580 0.797 0.790 27.37 321 0.8477

As can be.seen, the number of PCs, used in thdR@S#Rlel of each subset was similar but
the set of PCs are different. The least numberaofofs (i.e. 3 factors) is used for modeling the
solubility of subset of nitrogen containing compdsnwhile the higher number of factors (i.e. 8
factors) is used for by CH and oxygen subsets ofpmunds. For all subsets, the factors selected by
the correlation ranking procedures are differenmrfithose of eigen-value ranking.

To further check the prediction ability and ovdifigy of the resulting models, the leave-one-
out cross validation (LOO-CV) procedure was appliad_OO-CV procedurey-1 sample from a total
data set of each subset were used to construdibaatian set (assessment set) and to build a QSPR
model between the PCs and the examined solulalitgt,the solubility property of the left out sample
was estimated by the designed model. This procesdaserepeated until every sample in the total data
set for each subset was used for a prediction. , TRRESS (the predicted residual sum of squares) and
SSD (the sum of the squared deviation from the ne&ne calculated for each regression equation.
The squared correlation coefficient for cross \atith () was then calculated by the following
equationRy = 1 — (PRESS/SSD). The results of LOO-CV examamafor each subset of organic
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compounds are listed in column 8 in Table 3. Thesstvalidation results show that all models
(regression expressions) presented in the Tablv8Rf., values greater than 0.90 excepted for the
subset of nitrogen that it is due to small numidemolecules in this class. Thus, the cross-valarati
test indicates that the Sh indices can model thedisolubility of some subsets of organic compaund
were used in this studies, perfectly. [1].

In the last row of Table 3 the CR-PCR model obt@ifer the solubility of entire set of
compounds by the correlation ranking procedurésied. The trend of the PCs in order of decreasing
their correlation is PC1 > PC3 > PC6 > PC10 > P®C9 > PC8 which was not in the same direction
as their decreasing eigen-value. The resultingetation equation had correlation coefficiert ®
0.8580, RMS = 0.790, F = 3212K = 0.8477. The seven factors used in this equationexplain
85.80 % of the variance in the -logS of all dattaesolubility organic compounds. Further attempts
were made to examine the quality of the resultedehby splitting the data set into the calibratsan
(320 molecules) and prediction set (60 molecul€lsg resulted CR-PCR model was the same as that
obtained for entire set of molecules. ThevRlue and RMS error for the validation set ard8A and

0.769, respectively.
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Figure 2. Plot of the predicted -logS by CR-PCR against ttgeemental values. The dash line is the ideabfit
the straight line.

3.2. PC-ANN Modeling

Once valid linear models were found using PCR,sstegre taken to see if prediction results
could be improved by the use of artificial neuratworks (ANNS). Typically, superior models can be
found using ANN because they implement nonlinedatisnships and because they have more
adjustable parameters than the linear models. Tdreten this study we suggested the use of ANN as
the nonlinear model. A fully connected, three-lagerfeed-forward ANN model with back-

propagation [16] learning algorithm is developedrionlinear modeling between the selected PCs by
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the CR-PCR model. The seven PCs were test withraed®IN architectures, the ANN model was
confined to a single hidden layer and a sigmoiddfier function, as a more versatile transfer fumcti
was used in this layer. Because of the large nurabedjustable parameters, it is possible to over-
train the network. If over-training does occur, tdnutions of a small subset of the training set
compounds may be considered as a major contriuius hindering the ability of the network to
accurately predict the physical property in questibo avoid over-training, the data set is splibia
calibration set, a prediction set and a validagseh Each connection in the network is made up of a
weighting factor and a bias term. The weights aiedds are changed during training based on the
RMS error of the validation set; the correspondiatyes are then calculated for the validation set f
each of configuration. The convergence criteriors Wee least RMS error in the prediction set. The
number of iterations for convergence was betwee®0Q5and 20000. In-each. ANN, the neuron
architecture (i.e., the number of nodes in hiddeyred; ) and parameters (i.e., learning rate and
momentum) were optimized to reach the lowest theSR&ftror<of the validation set as the
performances of the resulted models, becausehilisved that overtraining occurs when the RMS
error begins to rise. At this point, the valuegh# weights and biases are not changed furthefotA p
of RMS error as a function of linear rate and motaemin three different numbers of nodes in hidden
layer is shown in Figure 3. The results indicatg #in ANN with eight PCs as input variables, 6 sode
in its hidden layer, learning rate of 0.15, and reatom of 0.65 resulted in the optimum network
model. A comparison between the results obtainetth®igen-value ranking and correlation ranking-
based PC-ANN models revealed that the latter predlaccurate results, which is in accordance with

previous findings [4-6, 22].
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Figure 3. Optimization of linear rate (LR), momentum (Moar)d number of hidden layer nodeg)(for ANN

modeling; &) ny =5, B)y=6andC) ny=7.
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The predicted values of -logS resulted from appbicacorrelation ranking ANN procedures model
(CR-ANN) are plotted in Figure 4 against the copmwling experimental values, and the statistical

parameters for the best-fitted model are repredent&able 4.
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Figure 4. Plot of the predicted -logS by PC-CR-ANN agairg £xperimental values. The dash lines are the

ideal fit to the straight line.

Table 4. Statistics of principal component regression neded artificial neural network models with one
hidden-layer neurons for calculating aqueous sbtubi

CR-PCR CR-PC-ANN

Calibration set Prediction set Calibration set driton set Validation set
N 320 60 270 60 50
SE 0.806 0721 0.315 0.438 0.318
RMS 0.796 0.769 0.314 0.450 0.314
REP 25.456 20.095 9.864 11.767 11.054
R? 0.8427 0.9147 0.9763 0.9685 0.9700
F 239 - 11047 1781 1551
Bias 0.0000 -0.2360 -0.0040 -0.0350 -0.0300
error range  (-2.52)-(2.08) (-1.78)-(1.62) (-1.00)94) (-1.00)-(1.21) (-0.70)-(0.64)

As it is observed, the models obtained by the PONANave superior qualities relative to those
obtained by PCR. This means that there are nonmlinelationships between the proposed Sh
topological indices and the —logS of the organidemgles used in this study. A comparison between

the results obtained by the eigen-value ranking eodelation ranking-based PC-ANN models
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revealed that the latter produced accurate resutigh is in accordance with our previous findifds
6, 22].

4. Conclusions

The usefulness of the some newly proposed topabgiclices (Sh indices) in quantitative
structure-aqueous solubility (-logS) relationshiyalgsis were use to predict the aqueous soluhifity
different subsets of organic compounds containingous heteroatoms for a wide variety of 380
organic compounds by using the principal compomegtession and principal component-artificial
neural network modeling methods. The PCs were editts the models based on their decreasing
eigen-values (EV) and their correlation rankingffioients (CR) with the -logS, in which the latter
produced better results. Successful correlatioratiaps were developed for the aqueous solubilities
of different five subsets of organic compounds. Témulting individual QSPR correlation equations
involve three to eight PCs and have RMS-errorsirgnfyjom 0.132 for oxygen containing compounds
to 0.555 —log units for halogenated compounds. é&ding from the correlation equations for the
subsets of compounds, a general seven-PC correlatael was developed for the prediction of
solubility of any organic compound containing C, ®l, N,'S, Cl, Br, and | atoms. This correlation
model covers a large diversity of organic structuaed: offers a RMS-error of 0.790 —log unit. In
conclusion, we applied both linear and nonlineadet®to performances of the prediction of aqueous
solubility by using these seven PCs. PCR analyfsikendata showed that proposed Sh indices could
explain about 91.47% of variations in the solupitiata; while the variations explained by the ANN
modeling were more than 96.85%. These results dsirated that aqueous solubilities for a wide
range of compounds could be predicted accurate§edaolely on molecular structure, with no
corrective factor for physical state or the usetber data and was easy to use.
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