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Abstract 
The performance of a solid rocket motor depends heavily on the flow characteristics, the chemical 

composition of the grain, combustion products and the burning rate. In this study the start-up transient internal 

ballistics of a typical solid rocket motor (SRM) is numerically simulated. Two burning rate laws are used to 

model simple and erosive burning. Governing equations of 2-dimensional inviscid flow are solved using an 

explicit MacCormack finite difference technique in which the locations of shock waves are captured by the 

solution scheme. Erosive burning increases the chamber pressure and thrust during the early portion of 

burning for a particular motor.  
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1- Introduction 
A solid rocket motor is the simplest form of chemical propulsion. The fuel and oxidizer are both 

incorporated in a single solid, called the propellant grain, located inside a container called the combustion 

chamber. The solid rocket motor belongs to the family of the rocket engine (thrust achieved by mass ejection) 

and its history can be considered both ancient and recent.  

Preliminary prediction of SRM performance can be achieved using numerical simulation of its internal 

ballistics [1-2]. Due to recent progress in computing power this field is developing rapidly [3]. Better knowledge 

of internal flow field should make possible to optimize solid propellant grain geometries and thermal insulation 

thicknesses for efficient size and shape of the combustion chamber and exhaust nozzle [4].  

In this paper we discuss details of a general code which simulates SRM with cylindrical grains. The motor 

configuration incorporates a very low port to throat area ratio, which in turn results in a very high velocity 

propellant gas traveling across burning propellant surface, particularly near the aft end of the propellant. This 

phenomenon is known as erosive burning. Erosive burning is defined as the increase in burning rate of a solid 

propellant that occurs as a function of hot gas cross-flow at the propellant surface [5]. The amount of burning 

rate increase is established by comparing the erosive burning rate to the burning rate that occurs at the same local 

pressure for no cross-flow. The primary mechanism for the increase in rate is the additional heat that is fluxed 

into the surface as a result of the cross-flow. Several factors contribute to this increase in heat flux, including the 

thermal gradient in the boundary layer, and turbulent enhancement of the local transport properties. 

Several analytical and numerical studies of erosive burning have been conducted. Razdan and Kuo [6] used 

a turbulent boundary layer approach to show that the augmented burning rate with free stream velocity is due to 

the increased heat feedback and increase in transport coefficients, as well as increased turbulent mixing. Gordon, 

Duterque, and Lengelle [7] used a 1-D wall zone model coupled with a fully turbulent 2-D description of the 

whole flow field to develop an erosive burning model correlated to wall shear stress. They also concluded that 

the propellant’s normal burning rate was the primary influence on the threshold for erosive burning. Bulgakov, 

and Karpov [8] also used the boundary layer equations to study the burning of stick propellant and negative 

erosive burning (a decrease in burning rate with blowing across the surface), and found satisfactory agreement 

with experimental data. Mukunda and Paul [9] conducted a study to examine the universal behavior of erosive 

burning. They concluded that for most practical propellants, erosive burning effects are primarily a function of 

the non-erosive mass flux and the Reynolds number, with little effect due to chemical kinetics. 

Governing equations of an axisymmetric inviscid flow are solved using an explicit MacCormack finite difference 

technique in which the locations of shock waves are captured by the solution scheme. To evaluate performance 

of the present code, transient flow field of several SRMs with different burning surfaces are simulated.  
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2- Numerical Model 
Fig. 1 shows a typical SRM with inner burning surface. The mixture of the gases is assumed to be frozen in 

equilibrium and the reaction to be finished near the grain surface. Gas flow is assumed to be inviscid and 

unsteady. For many analysis problems in solid rocket motors, an assumption of inviscid flow provides 

sufficiently accurate results for design or development tasks [1-2]. Typically, this assumption results in an error 

of 0.2 to 0.7% [10]. 

 

 
Fig. 1. Schematic of a solid rocket motor. 

 

The governing equations in the conservative form are: 
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where U  represents the conserved variable solution vector 

 T
zr E,v,v,U            (2) 

rv  and zv  are the radial and axial components of  the gas velocity V , and E  is the total energy per unit volume 

of the gas. The vectors F  and G  are the flux vectors in the r  and z  directions, respectively, and S  represents 

the sources due to the axisymmetric flow geometry. 
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The gas-phase is taken to be calorically perfect and the total energy is then given by 
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where   is the ratio of the specific heats for the gas flow. Expressions for the overall propellant burning rate are 

intrinsically coupled to the gas dynamic flow equations, and these equations must be defined before the core flow 

can be computed. Two laws of burning rate are used: simple burning, Eq. 5, and Lenoir-Robillard erosive 

burning law [10], Eq. 6. 
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Here 
Ta  stands for burning rate coefficient, n is the burning rate pressure exponent, G is mass flow velocity 

per unit area, D is characteristic dimension of port passage, 
p
 is the propellant density,   is a constant with a value of 

53, pc  is the average specific heat of combustion gases,  is gas viscosity, Pr is the Prandtl number, psc  is the heat 

capacity of solid propellant, Tf  is the flame temperature, Ts is the propellant surface temperature, and Ti is the initial 

ambient temperature within the propellant. 

An explicit MacCormack finite difference technique is used to solve the equations. Finite difference 

methods are useful for complex equation sets such as the Euler or Navier-Stokes equations, but can be effectively 

used only in simple geometric regions. Using finite difference methods for complex geometries requires adopting 

coordinate systems or coordinate mappings which transform the physical domain into a computational domain of 

simple shape. In this paper, a set of simple analytical stretching functions are used to map the bounding surfaces 

into a square computational domain. Therefore physical plane )t,z,r(  can be easily mapped onto planes or lines   

in the computational domain ),,(   with a general transformation: 
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Formally applying the chain rule of change of independent variables for Eq. (1) results in the following 

conservation laws in the ),(   plane 
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and J  is the Jacobian of transformation. 

The governing equations in the fluid domain are solved using a MacCormack scheme [11]. The basic 

scheme is an explicit, time marching scheme that produces second order time and space accuracy. The time 

derivative at each time step is first calculated by calculating the spatial derivatives with a first order forward 

scheme. The scheme can be extended to fourth order spatial accuracy by replacing the first order forward and 

backward terms with second order forward and backward schemes. The solution is temporarily advanced in time, 

where the time derivatives are then recalculated based on the new values and a first order backward scheme. The 

two time derivatives are averaged, and the solution is permanently advanced one time step. The scheme can be 

written symbolically as 
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(Corrector) 
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Notice that the spatial derivatives are discretized with opposite one-sided finite differences in predictor and 

corrector stages. The star variables are supposed to be evaluated at time level 1nt . 

 

3- Initial and Boundary Conditions 
Initial Conditions 

At time 0t  velocity components rv  and zv  are everywhere set to zero, and pressure and temperature are 

set to the ambient values everywhere in the flow field. Density and internal energy are obtained from the 

equations of state. Boundary conditions must also be specified for all of the dependent variables E,,v,v zr   along 

with corresponding values of p  and T . 

Boundary Conditions 

Four types of boundary conditions are required for the computation of the flow field, i.e. wall, inflow, 

outflow and symmetry conditions. They are prescribed as follows. On the impermeable wall, slip conditions are 

specified along with an adiabatic wall for gas phase. On the symmetry line, the normal velocity of gas phase and 

the gradients in the normal direction of all other variables are specified as zero.  
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Propellant surface boundary conditions: 

The gas velocity boundary condition should be divided into two cases: burning surface and unburning 

surface. For the velocity on a unburning surface, the following relation is given: 0 zr vv . 

For the velocity of a burning surface the normal velocity is given by: 

b
g

p
r rv




             (13) 

If the flow is subsonic at nozzle exit, the atmospheric condition is adopted; otherwise the solution is extrapolated at 

the exit. 

Two cases are simulated in the present study. The first case is to validate the present code by comparing the 

results with those presented in [12] for a similar motor under similar operating conditions. In the second case, 

simulation results for erosive and simple burning laws are compared with each other. The general configuration 

of the motor for the two cases is similar (Fig. 2), but the characteristics of the propellant, as well as the specific 

dimensions for the motor are different (Table 1). The nozzle used in these simulations has a cosine profile.   

 

 
Fig. 2. Schematic illustration of the motor used in simulations. 

 

 
Table 1. Characteristics of the motor. 

Used for comparison 

with [12] 
Present study Specification 

200 73.5 Chamber length (cm) 

200 69.5 Propellant grain length (cm) 

9 1.8 Inner radius of  the grain (cm) 

10 4.7 Outer radius of  the grain (cm) 

8 4.8 Nozzle expansion ratio 

40 15 Nozzle total length (cm) 

30 10 Nozzle diverging section length (cm) 

0.1 0.07 Burning rate coefficient (aT) cm/s 

0.35 0.35 Burning rate exponent (n)  

1845 1730 Propellant density )( P  Kg/m3 

 1500 Propellant specific heat )C( ps  J/Kg K 

2993 3000 Propellant flame temperature )T( f
 K 

 1000 Propellant surface temperature )T( s
 K 

 0.72 Gas Prandtl number  (Pr) 

323.75 320 Specific gas constant (R) J/Kg K 

 8.075 × 10-5 Gas absolute viscosity )(   Kg/m.s 
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4- Numerical Results  
In order to validate the code, various test problems were examined by the scheme. One such problem is the 

calculation of flow field through a converging-diverging nozzle with different back pressures and with and 

without shock. Good agreement with the exact solution has been achieved (Table 2, Fig. 3). 

 
Table 2. The ratio of throat pressure to stagnation pressure. 

Case  Exact Analytical 

Solution 

Numerical Solution 

9300 .ppt   0.627 0.632 

8000 .ppt   0.528 0.530 

7000 .ppt   0.528 0.530 
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 Fig.3. Pressure distribution through a converging-diverging nozzle 

 as predicted by MacCormack method. 

 
Comparison of the results obtained by present study and [11] also show the capability of the present code 

for the modeling of solid rocket motors. Fig. 4 shows the variation of the head end pressure with time for a 

specified motor used in [11]. It is noted that simple burning law is used in this simulation.  
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Fig. 4. Head-end pressure versus time; comparison of the present code with [12]. 
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After obtaining a validated code for transient and steady-state solutions, ballistic calculations of a generic 

solid rocket motor was performed. The gird used for the computations has 566×70 nodes. Fig. 5 shows physical 

domain grid at the nozzle entrance region of the motor. Figs. 6 to 8 show the pressure contours at the motor 

head-end, aft end, and nozzle of the motor, respectively, for simple burning. It is clear that the maximum 

pressure is at the head-end of the motor while the minimum pressure occurs at the nozzle exit. Figs. 9 and 10 

show head-end pressure and thrust versus time for simple and erosive burning. Erosive burning increases the 

burning rate, hence increasing the mass flow rate, and causing the pressure and thrust within the chamber to rise 

above those for the simple burning case.  

A comparison of burning rates is highlighted in Fig. 11. When erosive burning is considered the burning rate 

becomes a function of both local pressure and local velocity. In this case the highest rate of burning is at the aft 

end of the grain. In simple burning, burning rate is only a function of the pressure. Therefore, the highest burning 

rate is at the head end of the grain which is the location of highest pressure. 

 

 
Fig.5. Physical domain grid at the nozzle entrance region. 

 

 
Fig.6. Pressure contours at the motor head-end (grain is identified by the low pressure region). 
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Fig.7. Pressure contours at the motor aft-end (grain is identified by the low pressure region). 

 

 

 
Fig.8. Pressure contours in the nozzle. 
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Fig. 9. Comparison of head-end pressure versus time with and without erosive burning. 
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Fig. 10. Comparison of thrust versus time with and without erosive burning. 

www.SID.ir


Arc
hive

 of
 S

ID

www.SID.ir

  دومين كنفرانس احتراق ايران    
   دانشگاه آزاد اسلامي مشهد-   مشهد-  1386  بهمن ماه

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0 0.2 0.4 0.6 0.8 1 1.2

Normalized grain length

B
u

rn
in

g
 r

a
te

 (
m

m
/s

)

Simple

Erosive

 
Fig. 11. Comparison of burning rate versus grain length with and without erosive burning. 

 

The performance of a rocket propellant is often described by its specific impulse, spI  which is the 

instantaneous impulse of the rocket per unit weight flow rate of the propellant  

mg

F
I sp


             (14)  

where F  is the thrust force, m is the mass flow rate of the propellant, g  is the standard acceleration of 

gravity. Higher specific impulse means better performance. Solid propellants typically have an spI  in the range 

of 100 to 300 s. Fig. 12 compares spI  for simple and erosive burning rates. As seen, the specific impulse for 

erosive burning is lower than that for simple burning. This is an example of one of the undesirable characteristics 

of erosive burning.  
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Fig. 12. Comparison of specific impulse versus time with and without erosive burning.  

 

Fig. 13 shows axial velocity as a function of axial position along the grain at time t=0.01s. Axial velocity 

due to erosive burning is higher than that obtained by simple burning. One should note that in this paper we 

study transient burning of a typical solid rocket motor, however during the later stages of simulated burn, the 

velocity for simple burning case will be slightly higher due to the fact that the port diameter will be smaller. 
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Fig. 13. Port centerline axial velocity versus grain location with and without erosive burning. 

 

5- Conclusion 
The start-up transient internal ballistic of a SRM with cylindrical grain is numerically simulated. Governing 

equations are two dimensional Euler equations and are solved using the MacCormack explicit finite difference 

scheme. Discharge from reservoir and nozzle flow test cases showed that the correct steady solutions are 

obtained with shock capturing capability. Two burning rate laws were used to compare simple burning and 

erosive burning. After obtaining a validated code for transient and steady-state solutions, ballistic calculations of 

a generic solid rocket motor was performed. Erosive burning increases the chamber pressure and thrust during 

the early portion of burning for the particular motor. 
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