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1. Introduction 

Numerical study of flow behavior in rivers and coasts has an interesting range of applications 

in fields such as river hydraulics, environmental hydraulics and other similar activities. In this 

work the formulation of a finite element numerical model for the shallow water equations is 

introduced and the model is tested using some standard examples cited in the literature. 

The depth integrated shallow water equations govern the hydrodynamics in the shallow water 

bodies and one of suitable numerical techniques of these PDEs is the CBS finite element 

algorithm. 

The foundation of the algorithm is the fractional step method initially introduced by Chorin 

[1] in the finite difference context for the incompressible Navier-Stokes equations. The 

algorithm permits some interesting and useful advantages. Firstly, it provides a critical time-

step in terms of the current velocity instead of the wave celerity. It is a relevant property for 

low Froude number problems. Secondly, the procedure allows the application of the standard 

Galerkin method along the characteristics due to the split of the pressure type terms. Finally, 

the most important advantage of the procedure is its capability for using in the both subcritical 

and supercritical flows. 

This method firstly introduced by Zienkiewicz [5] for modeling of shallow water equations in 

the finite element context. Over the past decade, many investigations have demonstrated the 

efficiency of this method for shallow water problems. Notable studies on this subject have 

been carried out by Ortiz et al. [2, 3 and 5]. This paper is devoted to the description of the 

CBS finite element method capabilities for modeling of some interesting problems in the 

shallow water field. 

 

2. Mathematical model 

Modeling flow hydrodynamics in shallow water bodies requires the prediction of water depth 

and depth averaged velocities in x and y directions. To do this, following shallow water 

equations in the depth integrated form can be written using the summation convention as 
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where (i, j =1, 2); U and h, the well-known hydrodynamics variables are, respectively, Ui = 

hui that ui is the i component of the average velocity over the depth and h the total height of 

water; Fij = huiuj is the i component of the j flux vector and the pressure type variable p is 

given by 
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where H is the depth of water measured from an arbitrary horizontal datum. The variables h 

and H are related by: h = H + η, where η is the elevation of the free surface with respect to the 

arbitrary horizontal datum. Finally, Qi represents the i component of a source vector given by 
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The depth integrated source terms in Equation (4) come, respectively, from bottom slope, 

bottom friction (Chezy’s formula), Coriolis term: r1 = - f U2, r2 = f U1 where f is the Coriolis 

factor (f =2Ωsinθ, θ : latitude of the fluid element and Ω = 7×10
-5

 s
-1

 for the earth), and wind 

tractions τi. 

 

3. A split method based on characteristics 

The time discretization for Equations (1) and (2) is performed by proceeding along the 

Characteristics and can be written as follows 
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where 
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(i, j, k =1, 2), ∆Ui and ∆p denotes the increments of the variables over a time-step ∆t and the 

wave celerity c for long waves relates p with the total height of water as 

gh
dh

dp
c ==2                                                                                                                           (8) 

and (0 ≤ θ1, θ2 ≤ 1). The method is completed by the elimination of ∆Ui in the discretized 

continuity equation (5) by computing the divergence of Equation (6) and replacing the 

obtained equations into Equation (5). The following ‘self adjoint’ type equation for the 

variable p is defined as  
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The ‘intermediate’ variable *

iU∆  represents the first two terms in square brackets of Equation 

(6), and is obtained explicitly. The practical procedure for the computation of p
n+1

 and 1+n

iU (at 

the time (n + 1)∆t ) is conducted by the following steps: (i) computation of the intermediate 

variable, (ii) computation of ∆p and (iii) correction of the momentum components by means 

of the complete momentum equation (6). 

 

4. Model test 

In order to illustrate the efficiency of the described model, the following well-known 

examples are reported. For the sake of simplicity, these examples are all pseudo-one-

dimensional and hence triangular uniform meshes are used along the entire of the solution 

domains. Since there are not the exact solutions for these situations, the results are evaluated 

qualitatively.  

The first example, illustrated in Fig. 1, shows the progress of a solitary wave onto a 

frictionless shelving beach. Fig. 2 shows the obtained wave profiles during its propagation 
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along the beach. The results indicate well the progressive steeping of the wave often obscured 

by other schemes that are very dissipative. 

 
 

Fig. 1- Problem statement and its initial conditions  
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Fig. 2- Wave profiles along the beach 

 

In the second problem, a dam is considered at the middle of a rectangular flat channel and the 

flow parameters after removing the dam are computed. The obtained results employing 40 

equal elements along the channel are shown in Fig. 3 and 4 compare favorably with published 

results obtained using other numerical techniques. 

0.6

1

1.4

1.8

2.2

0 50 100 150 200

Distance from Downstream

W
a

te
r 

e
le

v
a

ti
o

n

 t = 2.5 sec

 t = 5 sec

 t = 7.5 sec

Initial

 
Fig. 3- Water surface profiles after removing the dam 
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Fig. 4- Velocity profiles along the entire of the domain 

 

The problem of bore propagation along the rectangular flat channel is the last example studied 

here. The depth of 1 m and velocity of 1 m/sec are given as the initial conditions. Boundary 

conditions are imposed as the flow velocity of 1 m/sec in the upstream and a sinusoidal rising 

water elevation with period of 30 sec in the downstream boundary of the channel. After t = 30 

sec the water elevation is imposed as 2 m at this boundary. Obtained results for water surface 

profiles and flow velocity during the bore propagation are shown in Fig. 5 and 6. The results 

are in good agreement with the reported results in the literature such as [6]. 
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Fig. 5- Water profiles along the channel due to bore propagation 
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Fig. 6- Flow velocities along the channel due to bore propagation 

 

5. Conclusion 

The CBS finite element model was used for the numerical solution of shallow water equations 

presented has some remarkable features. The conjunction of a stability limit dependent on the 

flow velocity instead of on the wave celerity with an implicit computation of diffusion source 

terms to keep the convective limiting time-step is especially useful for modeling of real long 

term problems. The developed model was evaluated by some test problems and produced 

satisfactory results. In spite of the highly non-linear nature of the flow in these examples, the 

computational results indicate the favorable performance of the used procedure for modeling 

of the shallow water problems. As an important result, the described model can safely be used 

as an efficient tool for real applications in hydraulic engineering involving complex flow 

situations. 
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