
Archive of SID

www.SID.ir

www.SID.ir


Numerical Simulation of Waves Generated by ships in Shallow Water 

 

Mahmood  Rostami Varnousfaaderani
1
, Mohammad Javad Ketabdari

2
 

AmirKabir University of Technology (AUT), Faculty of Marine Technology 

Rostamivf@yahoo.com 

 

ABSTRACT 

Shallow-water ship-waves, known as wash waves, are important in marine engineering. These 

waves can affect coastal structures and change near-shore morphology. They can also cause 

damage to ship itself in finite depth channels. There are different theoretical methods to consider 

these waves. In this paper shallow-water ship-waves are simulated numerically. Applying 

Michell’s thin-ship theory, flow field far from the ship is investigated. The relevant ship is 

considered thin and chosen from Series 60. The numerical simulation is performed in subcritical, 

critical and supercritical regimes for different depth Froude numbers, constant ship speeds and 

water depths. In this study the flow is considered incompressible and irrotational. However for 

the accuracy of simulation the effect of eddy viscosity is then considered. Furthermore the 

effects of the boundary layer are considered. The numerical results were compared with other 

models and experimental results. It showed that Michell’s thin-ship theory could simulate this 

kind of waves with grate accuracy and reliability. 
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1. Introduction 

Shallow-water ship-waves, or wash waves can be generated by a fast ship at high speeds or by a 

large ship at moderate speeds, operating on a near-shore fairway or on an inland waterway. 

Generally these waves called vessel-induced effects due to having the following most important 

effects and problems [1, 2, 3]:  

• Cause extreme water level drawdown and return currents in confined channels 

• Generate surge waves on shallow banks 

• Present higher risk of ship transit in confined waterways and shallow estuaries 

• Disturbance of tranquility and accessibility of marinas, ports and harbors 

And also ship-generated waves have the most important following consequences: 

• Bank stability and shoreline erosion 

• Potential impact on marine life in coastal wetlands 

• Endanger the smaller boats moving in waterways 

• Swimmer safety 

• Berthing/mooring and on-offloading difficulties for cargo vessels in inland ports 

• Hazard to recreational and commercial boat marinas 

Due to the great importance of wake-wash effects, considerable research efforts have been 

devoted to the wash problem during last few years, both experimentally and theoretically. It 

seems that Michell [4] was the first who solved the Linearized problem of ship-waves for a ship 

moving steadily forward in a calm shallow sea. In general Michell formulated his thin-ship 

theory in water of finite depth.  However in his theory  the potential and wave resistance was 
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derived for infinite depth. For convenience Tuck�et al., (2000) [6] re-derived full finite-depth 

ship theory, and in particular the free-wave pattern far behind the ship. 

A more general shallow-water approximation is the equation of Boussinesq type, which is valid 

for almost arbitrarily unsteady cases. A set of modified Boussinesq Equations, was applied to 

compute ship waves in shallow water, using slender-body theory to approximate the near ship 

flow By Jiang, (2000) [1]. But in this kind of simulation, there are some limitations such as [3]: 

• Dispersive Limit for short-period waves, i.e., water depth/wavelength must be less than 

0.5 ( 5.00 <WLh ).   

• Depth-based Froude Number must be grater than 0.65 ( 65.0/ 0 >= ghVFh
). 

• The effects of viscosity are neglected. 

In the present study to simulate shallow-water ship-waves Michlet code is used. This code is 

based on the Michell's thin-ship theory. Also to validate the study, the results were compared 

with previous work in literature. Moreover the effects of eddy viscosities are considered. The 

incidental benefit of introduction  viscosity to the model is an improvement and increasing 

accuracy of  final results of  simulation. 

 

2. Problem formulation 

Describing the flow generated by a ship at a uniform speed of V in shallow water of constant 
0h , 

a Cartesian Coordinate System of Oxyz is used (see Fig.1). The plane Oxy is on the calm free 

surface with the axes x in the direction of ship motion. On the assumption that the fluid is 

incompressible and inviscid, the irrotational flow generated by moving ship can be described by 

a potential ),,,( tzyxΦ  governed by the Laplace equation in the whole fluid domain as: 

0=Φ+Φ+Φ zzyyxx
        (1)  

Kinematic and dynamic boundary conditions for this problem on the free surface at 

( , , )z x y tς= are: 

zyyxxxt V Φ=Φ+Φ+− ςςςς        (2) 

0
2

2

=+
Φ∇

+Φ−Φ gzV xt
       (3) 

where g is the acceleration due to gravity. The no-flux condition on the hull-surface 0),,,( =tzyxF  

can be expressed as: 

0=∇⋅Φ∇+− FVFF xt
       (4) 

And no-flux condition on the water bottom at 
0hz −= is: 

0=Φz
          (5) 

Ship waves in shallow water can be obtained solving the governing equation using the above 

boundary conditions. 

  

3. Michell's thin-ship theory 

Taking the vertical median plane of the ship as 0=y , it  may suppose that the ship remains at 

rest and the water moving backwards with uniform velocity V  apart from the wave-disturbance. 

The motion is assumed steady. Moreover it is assumed that a disturbance source having potential 

function of ),,( zyxφ  is located on Centerplane of the ship. Therefore the total velocity potential 

can be written as Vx
T −= φφ . Since the inclination of the ship's surface to the plane 0=y  is small 

everywhere, φ  will be small as well, and therefore the squares of the velocities which are 
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differentiation of φ , in comparison with their first powers can be neglected. The consequent   

linearized  kinematic boundary condition  can  be changed to: 

xyyxxz VV ζζφζφφ =−+−−= )(        (6)   

The dynamic boundary condition can  be written as : 

.
2

1 2
constgq

p
=++ ζ

ρ
        (7) 

where: 

xzyxt VVVq φφφφφ 2)()( 222222 −=+++−=∇=     (8) 

 and finally Eq.7 can be written as: 

)0,,(),( yx
g

V
yx xφζ =        (9) 

Eqs. (9) and (6) lead to the Kelvin free-surface condition on 0=z  as: 

0
2

=+ xxz
V

g
φφ          (10) 

No-flux condition on hull surface (Eq. 3) can be also be linearized to Michell's hull boundary 

condition. Considering  the ship, with offsets ),( zxYy ±= , which  is supposed to be laterally ( y -

wise) symmetric on 0=y  by putting Y instead of F in Eq. (3) and some linearizations the 

following relation can be obtained: 

 ),( zxVYxy ±=φ         (11) 

No flux-condition on the bottom (Eq. 5) can be modified on 
0hz −=  as: 

0=zφ          (12) 

Now Laplace Equation with new velocity potential ),,( zyxφ  with three boundary conditions ( 

Eqs.10 to12) give Michell boundary-value problem. Solving this boundary-value problem  using 

Fourier transformation ( Tuck et al., 2000 [6] ) leads to: 

 )(cosh)(sinh);(
2

0
0

hzkCdzkY
k

V z

h
x ++−= �− ζζλζ

π
φ    (13)  

where φ  and 
xY  are the Fourier transform of φ  and Y respectively. C  is a constant  obtained 

using  Eq. 10: 

ζ
λ

ζλζ
λζ

π
d

khkhkk
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00
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coshsinh

sinhcosh
);(

2

0 −

+
= �−

    (14) 

where  2

0 Vgk = and  the wave number of the wave component traveling at angle θ  is: 

 
0

2

0 .tanhsec khkk θ=         (15) 

And also:  

),(
2

1
);( zxYdxezY x

xi

x �
∞

∞−
= λ

π
λ        (16) 

),,( zyxφ can be obtained using inverse Fourier transform as: 

 
0

( , , ) cos ( ; , )i x
x y z d e d y z

λφ λ µ µ φ λ µ
∞ ∞

−

−∞
= � �     (17)                                                                                   

where θλ cosk=  and θµ sink= or 222 µλ +=k . 

Finally the free-surface elevation or shallow-water ship-wave profile can be obtained using Eq. 

9. It is supposed that the steady wave pattern ),( yxz ζ=  is the form of a sum of plane waves 

traveling at various angles θ  of  propagation relative to the direction of motion of body. Thus: 

θθζζ
π

π

θ
deyx

i

A�−
Ω−ℜ=

2

2

)()(),(        (18) 
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 where the  phase function is:  

]sincos)[()( θθθθ yxk +=Ω        (19)                                                                                                          

)(θζ A
 is the (complex) wave amplitude, and )(θk  is the wave number of the wave component 

traveling at angleθ , which can be obtained using  Eq. 15. The (complex) amplitude function 

)(θζ A
 which is sometimes known as the free wave spectrum or Kochin Function, can be 

computed in different ways. For example it can be obtained using Michell's thin-ship theory, or 

empirical or experimental measurements [5]. Michell's theory indicates that )(θζ W
 in terms of the 

hull slope ),( zxYx
can be obtained as: 

dxdze
kh

hzk
zxY

khhk

k ikx

xA

θ

θ
θ

π
θζ cos

0

0

0

22

0
cosh

)(cosh
),(

secsec1
sec

2
)( ��

+

−
=   (20) 

 

4. Eddy Viscosity 

If the usual molecular kinematic viscosity for water, of the order of 12610 −−= smν is used, there 

shall be no discernible effect. Even with large viscosities of order of 12310 −−= smν  , the viscous 

effect seems to be quite small. However physical nature of the phenomena dictates the existence 

of very large viscosities (though we believe unlikely) [7] as ambient eddy viscosities in the 

ocean.  However, we are more interested in eddy viscosity effects produced by the vessel itself, 

especially in its wake, where the highly vortical flow might indeed correspond to effective eddy 

viscosities of up to that order of magnitude. It should be noted that oceanographically relevant 

eddy viscosities of the order of  3105 −×=ν  and also high frequency waves do damp out the 

shortest diverging waves as 2πθ → . The empirical viscous correction factor was derived from a 

formula for damping of plane water waves given by Lamb [8]. Lamb suggested that a plane 

wave of wavenumber k ( k  can be obtained from Eq. 15) would be damped with respect to time 

t  (that equals Vx , since the problem is steady) as it travels on sea surface. In this regard the 

damping factor can be given as: 

)2exp( 2
k

V

x
D ν−=        (21) 

Or )sec2exp( 42

0 θν k
V

x
D −=       (22) 

Therefore the viscosity can be included to the problem applying  Eq. 21 in the −θ integrand for 

the far-field waves in Eq. 18.  

  

5. Numerical model and results 

 A Series 60 hull with a block coefficient 594.0=BC was chosen for numerical simulation. The 

model has a length of 4.689L =  m , a beam 0.625B =  m and a draft 0.25T =  m (see Fig. 2). The 

water depth was m5.0 , which leads to a ratio of water depth to ship draft 0.20 =Th ,being 

representative of shallow water dynamics. The length of calculation domain is 6 times the ship 

length behind the ship and the width of calculation domain is 26 times the ship beam. The 

calculation domain is divided by 101101×  panels to give generally good results.  Water depth can 

have a significant effect on the far-field waves created by ships. For infinitely deep water, 

i.e. 0=hF and at the Length-based Froude number 35.0=LF  (see Fig. 3.a), the wave system is the 

Kelvin wave pattern. At a subcritical speed, 5.0=hF  (see Fig. 3.b), the wave system is close to a 

Kelvin-Havelock wave pattern and the enveloping wedge is a little wider, but the half-angle (the 

Kelvin angle) is about 19  deg 28  min. Moreover the transverse wavelength is becoming longer. 
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At critical speed, 1=hF  (see Fig. 3.c), the wave system is characterized by significant diverging 

waves. The angle of the enveloping wedge widens so that the Kelvin angle increases up to about 

90deg. The transverse wavelength is almost twice the length of the infinitely-deep water. At a 

supercritical speed, 5.1=hF  (see Fig. 3.d), the wave system comprises only divergent waves, i.e., 

transverse waves or cusps have disappeared. The Kelvin angle decreases and is narrower than 

those of for the cases close to the critical speed. In this case the Kelvin angle can be given 

by 1arcsin −± hF .  

Fig.4 compares the calculated wave records in the present study with Boussinesq simulation of 

shallow-water ship-waves and also with experimental wave records. To validate the present 

study� two longitudinal wave cuts at y=1.0 and 2.45 in critical speed are presented. The good 

agreement between the present study and the literature and also experimental data is evident. It 

can be seen that in the present study there are not large differences beyond two ship lengths 

behind the ship between calculation and experimental data. It is due to this fact that  the effect of  

boundary layer and viscosity have been considered  in the model.   

Fig.5 compares the contour plots of wave patterns in each speed with and without considering 

eddy viscosity. The exaggerated value of 122 )10( −−= smoν in Fig.5.  is used to magnify the values 

for comparison. It can be seen that comparison of this results with that of the  zero-viscosity ( left 

figures) reveals that the finest diverging ripples in the pattern have disappeared. These ripples 

propagate almost perpendicular to the ship's track. In this case the eddy viscosity affects is 

mostly due to the θ4sec  term in Eq. 22. Larger viscosities can eliminate even more detail, 

eventually even inappropriately damping transverse waves. It seems that a viscosity magnitude 

of 123 )10( −−= smoν shows  a good compromise. 

Fig.6 shows the computed free wave spectrum at port and starboard of a Series 60 hull by 

Michell's thin-ship theory in different speeds. It can be seen that the wave amplitudes at critical 

and supercritical speeds are very larger than that of the   subcritical speed. 

 

6. Conclusions 

Michell’s thin-ship theory is a reliable and relatively accurate method of simulating ship-waves, 

which can be applied not only for deep water, but also for shallow water ship motion. This 

method can be applied for ships, which have the length to beam ratio more than 6. Therefore 

Michell’s thin-ship theory is suitable for the most modern ships. Using this method has some 

advantages to other models in relations to fewer limitations in application of this model. For 

example unlike the other models in this model  there are no  limitations such as a minimum value 

for depth-based Froude number or dispersive limit of short-period waves. Moreover as 

mentioned and applied in the model the effect of viscosity can be considered by using an 

empirical method for damping of plane water waves. 
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Fig. 1 Schematic of the problem and coordinate system 

 

 
Fig. 2 Lines plan of ship 

 

 
(a) 0=hF                                                           (b) 5.0=hF  

 
(c) 1=hF                                                               (d) 5.1=hF  

Fig. 3 Calculated wave patterns of a Series 60 hull, a) in deep water at 35.0=LF , b) shallow 

water at subcritical speed, 

c) shallow water at critical speed,  d) shallow water at supercritical speed 
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 (a)                                                                                   (b) 

Fig. 4 Wave records of a Series 60 hull passing by the critical speed a) at y=1.0m from 

origin, b) at y=2.45m from origin 

 

 

 

 

 
a) 5.0=hF  

 
b) 0.1=hF  

 
c) 5.1=hF  

Fig. 5 Comparison of  wave patterns under the effect of eddy viscosity in different speeds. 

Left pictures at the effect of zero viscosity, right pictures are with )10( 2−= oν  
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                                                       (a)                                                                                                  

(b) 

Fig. 6 Free wave spectrum of a Series 60 hull in shallow water versus the angle of wave 

propagation a) at different speeds  b)at  subcritical speed 

Archive of SID

www.SID.ir

www.SID.ir

