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Abstract 
For two immiscible fluids in steady state, stratified laminar, fully developed flow which one of 
them is Newtonian and the other is Bingham plastic the motion equations in horizontal pipe with 
appropriate boundary condition have been solved analytically. Velocity distribution for two 
phases and the location of plug region related to Bingham plastic fluid have been reported. The 
results show that the non-Newtonian rheological properties have negligible effects on two phase 
velocity profile.  
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1. Introduction 

The simultaneous flow of two immiscible fluid, liquid-liquid or gas-liquid, in a pipe is 

commonly found in the petroleum and chemical processing industries, in steam generation 

equipment, and in nuclear reactors.  

Stratified flow is a basic flow configuration in horizontal and inclined pipes. Due to the 

density difference between the two phases, they tend to segregate. Many pipeline systems are 

designed to operate in stratified flow region and many of process fluids have non-Newtonian 

behavior. Many works have been studied in two phase flow through pipes analytically and 

numerically that liquid has Newtonian behavior [1-4]. The annular flow of a lubricant as 

Bingham plastic non-Newtonian fluid model in contact with a Newtonian fluid has been studied 

in [5]. However, some information is available for the cases when the liquid phase is non-

Newtonian which mostly are concerned to numerical or experimental investigations or single 

phase [6-13]. Here exact solutions are obtained for two phase Newtonian-Bingham plastic fluid 

that has not been reported yet.  
 

2. Mathematical modeling 

Figure 1 illustrates two phase stratified flow and plug region in pipe and appropriate 

bipolar coordinate for this model. The appropriate coordinate system for solving the flow 
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problem, for stratified flow is the well-known bipolar coordinate system. Coordinate ϕ represents 

the view angle of the two poles from an arbitrary point in the flow domain, coordinate ξ  relates 

to the ratio of the radius vectors r1 and r2 1

2

rln
r

 
ξ =  

 
. The pipe perimeter and the interface 

between the fluids are isolines with constant coordinates ϕ, so that the upper section of the tube 

wall bounding the lighter phase is represented by ϕ1, while the bottom of pipe, bounding the 

denser phase, is represented by ϕ2. The interface coincides with the curve of ϕi. The 

transformation functions for Cartesian and bipolar coordinate are: 

1R sin sinh
x

cosh cos
ϕ ξ

=
ξ − ϕ

,     1R sin sin
y

cosh cos
ϕ ξ

=
ξ − ϕ

                                  (1) 

The steady-state, laminar fully developed flow which two phases are immiscible, 

homogeneous and incompressible and all body forces are negligible, the lighter phase is 

Newtonian fluid and denser phase is non-Newtonian fluid that obeys from Bingham plastic 

model. The motion equation for upper and lower phases can be simplified respectively as 

follows: 

 
2 2 2

1 1
2 2

1 1

v vcosh cos 1 dp
R sin dz

   ∂ ∂ξ − ϕ
+ = −  ϕ ∂ϕ ∂ξ µ  

                             (2) 

2
z z

1

cosh cos dpsin
R sin R dz

ϕ ϕ∂τ τ   ξ − ϕ
− ϕ = −  ϕ ∂ϕ  

                             (3) 

The non-Newtonian phase is considered as a very thin film, therefore the velocity variation in 

ξ direction has been neglected. The Bingham fluid model is defined as follows [14]: 

0
0 z 0

z

z 0

,

0,

ϕ
ϕ

ϕ

 τ
µ + γ τ ≥ τ  γτ =  

γ = τ < τ






                                      (4)  

The Bingham plastic model takes into account two parameters, the yield stress 0τ , and the  plastic 

viscosity 0µ , to fully characterize the material rheology. Note that once the fluid flows, the plastic 

viscosity defines the rate of change of the excess shear stress 0ττ −  with  the shear rate. γ  and 

τ  are rate of strain and deviatoric stress second invariants respectively and are defined by  
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( ) ( )
1/ 2 1/ 22 22 2

ij ij
i, j 1 i, j 1

1 1 1 1γ : :
2 2 2 2= =

   
   γ = γ = γ τ = τ τ = τ      

   
∑ ∑           (5)  

Where the shear rate tensor is:  

( )†γ= v+ v∇ ∇  

The boundary conditions for solving the above equations are: 

1. No-slip condition at the upper and lower walls 

1 1
1 2v 0, v 0

ϕ=ϕ ϕ=ϕ +π
= =                                        (6) 

2. No-slip condition at the triple point which are a part of wall (where the interface meets the 

tube wall) 

1v 0
ξ=±∞

=                                                  (7) 

3. Continuity of velocities across the interface of two phases 

i i
1 2v v

ϕ=ϕ ϕ=ϕ
=                                               (8) 

4. Plug core in the Bingham fluid phase 

p

2v 0
ϕ=ϕ

∂
=

∂ϕ
                                                (9) 

Where ϕp presents the plug region location in non-Newtonian phase. 
 
 

 
Fig. 1 Schematic representation of (a) bipolar coordinate, (b) stratified two phase flow 

 
 

2.1. The Newtonian Phase Velocity Profile 

Because of non-homogenous term in Newtonian phase motion equation Eq. (2), the 

general solution v1, is composed of particular solution v1
p, and the homogenous solution v1

h: 

Archive of SID

www.SID.ir

www.SID.ir


 

 

5th International Chemical Engineering Congress and Exhibition 
Kish Island, 2 - 5 January 2008 

 
p h

1 1 1v v v= +                                                    (10) 

Where the particular solution is as follow [2]: 

( ) ( )
( )

2
1 1p

1
1

R sin sin
v

2 cosh cos
ϕ ϕ − ϕ

=
µ ξ − ϕ

                                       (11) 

From substitution of Eq. (10) into Eq. (2), the homogenous partial differential equation and 

corresponding boundary conditions can be derived as follows: 
2 h 2 h

1 1
2 2

v v 0∂ ∂
+ =

∂ϕ ∂ξ
                                                  (12) 

h
1v 0

ξ=±∞
=                                                     (13) 

( )
( ) ii

2
i 0h 0

1 2
1 i

sinR sin( )v v
2 cosh cos ϕ=ϕϕ=ϕ

ϕ − ϕϕ
+ =

µ ξ − ϕ
                              (14) 

1

h
1v 0

ϕ=ϕ
=                                                     (15) 

The solution of homogenous part of the first phase equation can be obtained in the form of 

Fourier integral: 

( ) ( )h
1 1

0

v ( )sinh cos d
∞

 = φ ω ω ϕ − ϕ ωξ ω ∫                                  (16) 

Obviously this solution satisfies the Eqs. (12) and (15). Boundary condition Eq. (13) is an 

underlying requirement for the legitimate use of Fourier integral in obtaining the solution. 

Substituting the homogenous solution Eq. (16) in Eq. (14) yields: 

( ) ( ) ( ) i

2
0 i 0

i 1 2
1 i0

R sin( ) sin( )( )sinh cos d v
2 cosh cos

∞

ϕ=ϕ

ϕ ϕ − ϕ
 φ ω ω ϕ − ϕ ωξ ω + =  µ ξ − ϕ∫          (17) 

The Eq. (17) can be simplified: 

( )
0

( ) cos d 1
∞

φ ω ωξ ω =∫                                             (18) 

Where  

( )
( )i

2
i 1 0 i 0

1 2
1 1 i

( )sinh R sin( ) sin( )( ) , B v
B 2 cosh cosϕ=ϕ

 φ ω ω ϕ − ϕ ϕ ϕ − ϕ φ ω = = −
µ ξ − ϕ

            (19) 
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In order to obtain the )(~

ωφ , the following integral is employed [2]: 

( )
0

2 cosh cos
cos( )d 1

sinh( )

∞ ω ξ − ϕ
ωξ ω =

πω∫                                    

 (20) 

By comparing (18) and (20) 

( )
*

* 1

i 1

2B (cosh cos )( )
sinh( )sinh

ω ξ − ϕ
ϕ ω =

 πω ω ϕ − ϕ 
                                    (21) 

Finally the dimensionless velocity distribution for upper phase is: 

( ) ( )* * 1
1 1 1

0

sin( )v ( , ) ( )sinh cos d 2sin( )
(cosh cos )

∞ ϕ − ϕ
 ξ ϕ = φ ω ω ϕ − ϕ ωξ ω+ ϕ  ξ − ϕ∫            (22) 

Where superscript * shows the term has been non dimensionlized by
2

1

R dp
4 dzµ

. 

 

2.2. The Bingham Plastic Phase Velocity Profile 

 

The lower phase momentum equation Eq. (3) is an ordinary differentional equation and 

the integral constants can be obtained by using of boundary conditions, Eqs. (7) and (8). The 

dimensionless velocity distribution of non-Newtonian phase can be derived: 

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1 1*
2

2 1 1

C L L 0
v ( )

C 2 H H 0

 ϕ − ϕ − π + µ ϕ − ϕ + π ξ =ϕ = 
ϕ− π − ϕ + µ ϕ + π − ϕ ξ ≠




                 (23) 

Where 

2
1 1 1

3

2 3 1 1sin sin
3 1 cos

tan tan
2 2

  
       = − +       −                  


p p p

C Biµ ϕ ϕ
ϕ ϕ ϕ

             (24) 

( )2
2 1 1 p

p

1C 2 Bisin 2sin K
cosh cos

  
= µ ϕ + ϕ ϕ    ξ − ϕ  

                       (25) 
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( ) 1 2 2

2
1 22

(cosh 1) tan
2 2H Bisin arctan

cosh 1 cosh 1

12I 1
(cosh 1) ln(cos cosh )2sin

cosh 1(cosh 1) cosh 1

  ϕ ξ +      ϕ = ϕ
  ξ − ξ −

    
  

+  ξ − ϕ − ξ  + ϕ +
 ξ −ξ + ξ −
 
 

                 (26) 

( )

( ) ( )

2 2 2 2

3
2 2

2

2 tan
2K

(cosh 1) cosh tan tan cosh 1
2 2

tan
22cosh cosh 1 arctan cosh 1

cosh 1

−

ϕ

ϕ = +
 ϕ ϕ   ξ − ξ + + ξ −        

ϕ 
 

ξ ξ − ξ + 
ξ − 

 

                    (27) 

( ) 2 2 2
1 1

2L sin 4ln tan tan 2ln 1 tan 2Bi sin tan
3 2 2 2 2

   ϕ ϕ ϕ ϕ       ϕ = ϕ − − + + ϕ                    
        (28) 

( )
* 02 1
2 2 2

0

1

cosh 1 tan
v 2v , , Bi , I arctan dR dpR dp cosh 1

2 dz4 dz

 ϕ ξ +   τµ   = µ = = = ϕ
µ  ξ −

 µ  

∫               (29) 

The Bingham number Bi, is a dimensionless number, physically represents the ratio of yield 

stress to viscous stress. The application of dimensionless velocity profile Eq. (23), is limited by 

one of above mentioned simplification.  

A Bingham fluid does not deform until the stress level reaches the yield stress, after which the 

“excess stress” above the yield stress drives the deformation. This results in a two-layered flow 

consisting of a ‘plug layer’ and a ‘shear layer’. For single phase Bingham plastic flow through 

the pipe, the plug region radius can be calculated [8]: 

p0
p

r2 Lr , Bi
p R

τ
= =

∆
                                                                                                         (30) 
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3. Result and Conclusion 

Newtonian and non-Newtonian two phase stratified flow in pipes in the case of steady-state, 

laminar, fully-developed, incompressible and immiscible fluids have been studied analytically 

and the velocity profiles by assuming a thin layer of non-Newtonian phase, which the velocity 

variation can be ignored in ξ  direction, are reported. The results show that, the non-Newtonian 

fluid rheological properties affect the two-phase velocity profiles but for the case of gas and non-

Newtonian, this effect isn’t noticeable in gas phase whereas it has significant effect on non-

Newtonian phase. 

Figure (2) shows the variation of dimensionless velocity for lower phase in a constant pressure 

gradient at ξ=0, rheological properties affect the plug region, as expected, plug region increases 

by increasing the Bingham number. Figure (3) represents the variation of the two phase velocity 

with µ~  at ξ=0, the main effect of µ~  is obtained for 0.1µ > . 

 

 

 
 
 

 
 
 
 

 
 
 
 
 

 
FIG. 2, Variation of the non-Newtonian phase velocity with the Bingham number 
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FIG. 3, Variation of the two phase velocity with the µ~ , 1Bi 0.05, , 0
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 Nomenclature 

A   Flow area [m2] 

Bi       Bingham number 

D   Pipe diameter [m] 

h    Lower layer Depth [m] 

L    Pipe length [m] 

p    Pressure [pa] 

Q   Flow rate [m3/s] 

R   Pipe radius [m] 

v    Phase velocities [m/s] 

z    Axial direction 

Greek Symbols 

µ    Dynamic viscosity [kg/m.s] 

τ0   Yield stress 

τ     stress [pa/s] 

γ ْ   Shear rate [m/s2] 

ξ  Ratio of the radius vectors(related to the 

bipolar coordinate) 

φ  View angle of the interface (related to the 

bipolar coordinate) 

Subscripts 

1    Upper phase 

2    Lower phase 

i    Interface 

p    Plug flow 

Superscripts 

*    Non-dimension 
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