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Abstract 
A 2D Lattice Boltzmann BGK (LBGK) model on a D2Q9 lattice was constructed and tested 
for accuracy in an example physical situation. An introduction to the LBGK method is given 
followed by a brief outline of the computer model construction in MATLAB environment. 
Effects of viscosity and lattice number variation on velocity results were also examined. The 
LBM simulation results illustrate a good agreement with analytical solution of pressure driven 
flow through 2D symmetric channel. 
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1. Introduction 
In the last few years, we have witnessed a rapid development of the method known as the 
Lattice Boltzmann Equation (LBE). Although only in its infancy, the LBE method has 
demonstrated its ability to simulate hydrodynamic systems, magnetohydrodynamic systems, 
multiphase and multi-omponent fluids including suspensions and emulsions, chemical-
reactive flows, and multicomponent flow through porous media. The obvious advantages of 
the LBE method are the parallelism of the method, the simplicity of the programming, and the 
capability of incorporating model interactions [1-4]. Historically, the models of the lattice 
Boltzmann equation directly evolve from the models of the lattice-gas automata (LGA) [1,2]. 
A number of LBE models in both two and three dimensional are derived [2,3]. The kinetic-
model equation used in this paper is the BGK equation with a single relaxation time [1-4]. 
Although the BGK equation has its inherent limitations and shortcomings, it is sufficient to 
use the BGK equation for the purpose of studying hydrodynamics of simple fluids. The 
essential ingredients in any lattice Boltzmann models which are required to be completely 
specified are: (i) a discrete lattice space on which fluid particles reside; (ii) a set of discrete 
velocities (often going from one node to its nearest neighbors) to represent particle advection; 
and (iii) a set of rules for the redistribution of particles residing on a node to mimic collision 
processes in a real fluid [4-6]. In this article, the theory and construction of D2Q9 model are 
outlined in detail. Simulations were conducted under the MATLAB code for fluid moving 
through a symmetric 2D channel. The results obtained should allow one to assess the 
suitability of the model for implementation into a simulation. 
 
 

 
 
2. The Lattice Boltzmann BGK Model  

The Boltzmann model is constructed on a lattice space that contains fluid particles. 
Each of these particles is given a discrete set of velocities for traveling from one node on the 
grid to another. This represents particle advection 
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Figure 1: Node ordering on the DQ29 lattice         Table 1: Different lattice velocities associated to 

relative position on grid. Compare with Figure 1. 
 
The particles are redistributed on each node according to a set of rules that recover the 
collision process [5]. This model uses a D2Q9 lattice with nine discrete velocities that were 
originally outlined by Koelmann. Table 1 shows the velocity distribution rules from node 
point zero to the neighboring node points. Figure 1 displays the node ordering of the rules. 
The time evolution of the model is based upon particle distribution and collisions of the 
model. Time evolution is carried out during the propagation of the particles along the lattice 
points according to the rules described above. The time and space averaged microscopic 
movements of particles are modeled using molecular populations called the distribution 
function, which defines the density and velocity at each lattice node. The time dependent 
movement of fluid particles at each lattice node satisfies the following particle propagation 
equation [1-6]:   
 

)),(),((1),()1,( txFtxFtxFtexF eq
iiiii −−=++

τ
                    (1) 

 
Where Fi is the non-equilibrium distribution function, eq

iF  is the equilibrium distribution 
function, and ei is the microscopic velocity at lattice node x at time t, respectively. The 
relaxation parameter τ, determines the kinetic viscosity ν of the simulated fluid according to: 
 

(2 1)
6

ν
τ
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=                                          (2) 

 
Fig. 2a shows the orientation of the equilibrium distribution function components at time 

)),(( txFt eq
i , where each component points towards the direction of a microscopic velocity 

vector (ei). The components at each node propagate to the neighboring nodes and produce the 
non-equilibrium distribution function for the next time step of the neighboring node  

i iF (x e , t 1)+ +  . 
Fig. 2b illustrates migration of distribution function components from the neighboring nodes 
(both Fi and Feq i ) and orientation of non-equilibrium distribution function components (Fi) of 
the current node. 
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Figure 2. (a) Orientation of components of equilibrium distribution function calculated in the 
current time step, and (b) illustration of migration of distribution function components from 

the neighboring nodes 
 

 
The equilibrium distribution function is given in the following form for the two-dimensional 
BGK model with nine microscopic velocity vectors (D2Q9) is: [6] 
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Where ρ  is the density of the node, and iw is the weight factor in the ith direction. For 
instance, the weight factors ( iw ) for the D2Q9 LB model are: 0w = 16/36 for rest particle, 

iw = 4/36 ( 41 ≤≤ i ) for particles streaming to the face connected neighbors and iw =1/36 
( 85 ≤≤ i ) for particles streaming to the edge-connected neighbors. The macroscopic 
properties, density and velocity (u) of the nodes are calculated using the following relations: 
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The most commonly used technique to calculate unknown components of the distribution 
function at solid nodes is the application of no-slip boundary condition [7]. Two kinds of no-
slip boundary conditions exist. The first one, named as full bounce-back, assumes that the 
wall is located at the solid nodes whereas the second one, named as half-way bounce-back, 
assumes that the wall is located half-way between the pore and solid nodes [7]. 
 
 

3. Computational Implementation for Poiseuille channel flow and discussion 
The mathematical method for Poiseuille flow in the 2D channel was implemented into 

MATLAB code. The LB algorithm developed in this study is almost straight, Figure 3 shows 
Flow chart of the LB algorithm.  

 
Figure 4 compares the velocity profile of the fluid for three different acceleration sets 

(0.1, 0.5, 1) at cross section of the channel (by simulations using 102×102 lattice resolution  
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Figure. 3. Flow chart of the LB algorithm. 

                                               
with the analytical equation. An excellent agreement exists between the results based on 
Poiseuille’s Law and the D2Q9 model. Simulations were also carried out at four different 
resolutions (number of lattices): 152, 102, 66, and 52 lattice points along the channel width 
and three viscosities (relaxation time). As it is shown in Fig 5 the error decreases with an  
increase in resolution and further lattice number doesn’t have any effect on LBM prediction. 
Also, the increase in viscosity of fluid in Fig 4 shows the expected trend of velocity changes 
similar to that of the analytical one. Figures 5 and 6 were accomplished for a similar case to 
Figure 4 just with different acceleration 1e-9. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. x-velocity profile for different velocities in laminar domain 
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               Figure 5. Effect of lattice points on velocity profile          
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                      Figure 6. Effect of viscosity on velocity  
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Nomenclature 
ei  Microscopic velocity vector for D2Q9 model 
Fi(x, t)  non-equilibrium distribution function at node x at time t 
Fi

eq(x,t) Equilibrium distribution function at node x at time t 
U(x, t)  Momentum of particles at node x, at time t 
u (x, t)  Macroscopic velocity at node x, at time t 
x  Vector coordinates of the molecule 
wi  Weight factor for each direction around a node 
ν  Kinematic viscosity 
ρ(x, t)  Density at node x, at time t 
τ  Relaxation time 
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