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Abstract 
Nowadays, population balance is used as a powerful engineering tool in design issues. 
Different processes in chemical, petrochemical, biotechnology, pharmaceutical 
industry, etc. deal with particles. In such processes particle or bubble size distribution 
(PSD) influences the final product quality and also process design. On the other hand 
solution to the dominant hydrodynamic and thermo-kinetic equations ignoring this 
distribution will make it impossible to accurately simulate these processes. Solution to 
population balance equations (PBE’s) is needed to attain the PSD.  
Since 1940’s many researchers have proposed different methods for easier and also 
more accurate solution of PBE’s. One of the most common and famous of these 
methods is the classes method (CM). However, as this method requires a large 
number of classes to give a reasonable result, it needs a huge amount of calculations 
and time. To overcome this problem, in this paper a new variant of CM is proposed in 
which particles in different classes are transformed to new classes in two steps. In the 
first step, the particles are agglomerated and broken up to form three parallel types of 
groups, namely: groups formed from agglomerated particles; groups formed from 
broken up particles and finally a group formed from non-altered particles. In the 
second step, these parallel groups are combined to redefine classes for next time step. 
Finally, results of this method, which could be called Parallel Groups Classes Method 
(PGCM), for different coalescence and breakage kernels are compared with those 
obtained using analytical solution and CM. Excellent agreement of results of PGCM 
with analytical solution reveals its effectiveness and accuracy; which will give it an 
advantage over CM. 
 
Keywords: Population balance, Classes method, Particle size distribution, 
Agglomeration, Break-up. 
 
Introduction 
Population balance is used in several engineering applications. It is a well-established 
method used to analyze the particle size distribution (PSD) of the dispersed phase in 
processes such as precipitation, polymerization, crystallization, food processing, PSD 
of crashed raw material in mineral processes, rain drops and so on. 
In many of these processes population balance equations (PBE’s) should be coupled 
and solved simultaneously with fluid dynamic equations. In this case a huge amount 
of calculations should be done. As analytical solutions exist in very few cases [1], 
numerical techniques are sought. To all of these techniques accuracy and low time 
consumption are essential.  
Since 1940’s various techniques and methods have been proposed to ease the solution 
of PBE’s. The earliest published studies were done by Blatz and Tobolsky [2] who 
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considered the coagulation and fragmentation of a polymerization-depolymerization 
system. 
Other famous methods are Monte Carlo Method [3], classes method (CM) [4-5], the 
standard method of moments (SMM) [6], the quadrature method of moments 
(QMOM) [7-9], the direct quadrature method of moments (DQMOM) [10, 11] and 
multiple size group method (MUSIG) [12]. 
In this paper a new approach is proposed to solve CM with less effort and more 
accuracy. As this method uses parallel independent groups of particles in each stage 
of size evolution, it is called parallel group classes method (PGCM). 
 
Theory 
A class of particles is defined a set of particles close in size so that it can be assumed 
they all have the same size called the characteristic size of the class. So if a dispersed 
phase consisting of particles with different sizes is to be divided to M classes, a set of 
characteristic sizes of classes is defined as },...,,{ 21 Mϑϑϑ  so that a particle which 
belongs to ith class has a size ),[ 1 iii ϑϑξ −∈ ; for the first class ),0[ 11 ϑξ ∈ . 
In some cases Mϑ  can be so large to be assumed infinity; however, in many practical 
cases physical properties confine it to a limited value, such as size of a bubble which 
is limited by maximum stable bubble size [13]. 
A method to calculate the characteristic size of a class is the sauter mean diameter 
which is defined as: 
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where jd ,32  is the mean sauter diameter of ith class, iN  is the total number of 
particles in the ith class, and jn  is the number of particles having a diameter jx  (note 

that  ),[
6 1

3
jjjx ϑϑ

π
−∈ ). 

In addition to this, a characteristic size could be fixed (fixed pivot) i.e. once it has 
been calculated or specified it will remain unchanged throughout calculations, or it 
can be variable (moving pivot) i.e. in the beginning of each time step the 
characteristic size is recalculated from the results of the last time step. 
Population balance equation in the simplest form can be written as: 
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In which iN  is the number of particles in the ith class, u  is the velocity vector of flow 
field, and Br  and Dr are the rate of birth and death of particles in that class, 
respectively.  
Equation (2) is frequently stated with a distribution function, ),( tvf , which relates to 

iN , the total number of particles within ith class, as: 
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f  can also be approximated by a finite set of Dirac delta functions as: 
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Thus after summing up equation (2) and substitution of Ni with f a new form of PBE 
is acquired: 

BCRfu
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where BCR ,  indicates rate of coalescence and breakage of different particles expressed 
as function of distribution function. 

Br  and Dr  in eq(2) are results of agglomeration (coalescence), breakage, nucleation, 
reaction, absorption and dissolution phenomena. Ignoring the last four processes 
which have small or none contribution in some chemical operations (other than 
crystallization), these two terms may be written as follows: 

bBaBB rrr ,, += ,         (6) 

bDaDD rrr ,, += ,        (7) 
where indices a and b correspond to agglomeration and breakage, respectively. 
Moreover if the convective term can be neglected (in fact this is not the case in reality, 
however, many authors have done so to verify their technique and compare it with 
available analytical solutions) the original PBE can be written as: 
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Now the above rates should be defined. In terms of the continuous distribution 
function, f: 
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),()(, tvfvr bD β= .        (12) 
where Q and β  are the coalescence and breakage rates respectively, γ  is the number 
of particles formed from a breakage and )|( vup  is the fraction of particles of size v 
that have been formed from breakage of a parent particle of size u. 
In terms of the discrete variable iN , the following equations can be easily derived by 
substitution of f from equation (4) into Eq’s (9)-(12). So: 
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The formulation of new method starts with assuming M original classes in the 
beginning of time step tn. Three types of parallel independent groups are formed after 
coalescence and breakage phenomena, which are: 
a) M group consisting of particles formed from breakage of original particles. So if a 
particle is formed after break-up of a particle in the original ith class, its size will be 
denoted by ),0[),[ )(

1
)()(

i
i

k
i

k
i

k ξϑϑζ ⊆∈ +  and the number of particles in breakage classes 
by )(i

kB  with )(,...,1 iNBk = . 
b) 2/)1( +MM  groups consisting of particles formed from agglomeration of original 
particles. So if a particle is made up from coalescence of a particle originally from ith 
class and another particle from jth class with Mji ,...,1, = . Then its size and number 
are denoted by )(ijψ ( ),[ 2 jijiji +−+∈+= ϑϑξξ ) and ijA , respectively. 
c) non-altered particles which form a group of original classes and have noting as the 
same as original classes, except that the total number of particles in ith class is shown 
with iN . 
In this regard the number of particles in ith class can be written as a sum: 

)(i
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And the PBE can be split into three equations: 
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As a result the original PBE is transformed into 3 simpler equations. These equations 
are solved to give separate size distributions which in turn are combined to form the 
overall size distribution in the new time step. 
To start simulation one needs to specify kernels and an initial condition. Herein it’s 
done as the following and according to Scott [1]. 
Coalescence kernels:  Agglomeration kernels were selected as: 
1. Constant kernel: CvuQ =),(  
2. Summation kernel: )(),( vubvuQ +=  
3. Product kernel: BuvvuQ =),(  
where dtvuQ ),(  is the coalescence probability per unit densities in the ranges du  and 
dv , and C, b and B are constants. For the sake of simplicity and in order not to lose 
the available analytical solutions, the system is assumed with zero particle breakage.  
Dimensionless parameters are defined as 00 /or  / ϑξϑϑ=X , 00 /),(),( NtfTX ϑϑφ =  
and T is a dimensionless time which is defined in each case. For a constant kernel 

tCNT 0= , for summation kernel tbNT 00ϑ= , and for the product kernel tBNT 2
00ϑ= . 

Initial conditions: A continuous Gaussian-like distribution approximated by a 
function of the following form was considered as the initial condition: 
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where a, v′  are constants and ν  is a positive number. 
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It can easily be shown that for this type of initial distribution, the number of particles 
having size of 05ϑ  is less than 1 percent of total number of particles ( 0ϑ  is initial 
mean size of all particles which can be found to be av /)1(0 +′= νϑ ). So as no 
breakage of particles is considered, in a short time from start-up of process it is 
reasonable to assume a maximum particle size of 020ϑ . 
Of the aforementioned kernels the former and the latter are chosen. For constant 
agglomeration kernels, the dimentionless analytical distribution function is derived to 
be [1]: 
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where Te−−= 1τ . And for product kernel it is: 
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Results 
The new PGCM has been validated on aggregation and breakage processes. A 
comparison of PGCM with CM and analytical solutions are presented.  
Figures 1 and 2 show total number distribution and the distribution function relative 
errors respectively, calculated for a constant coalescence kernel by applying CM to 
particles having a maximum size of 010ϑ  and 020ϑ  ( 10max =X  and 20 respectively) 
and lying in 10 and 20 classes. 
From Fig 1 one can conclude as number of classes reduces the total number of 
particles in each class increases. It also shows that there is still a significant difference 
between analytical solution and the results obtained from CM. Fig 2 shows that the 
error increases with size of class but considering more classes will decrease this error 
considerably.  
Fig 3 shows a comparison between analytical solution and results of 20 and 10 classes 
obtained from PGCM. There is no significant difference although there is a great 
reduction in number of classes. Moreover a good consistency of results is observed 
with analytical results. Note that for both of these two curves 1/max =MX . Otherwise 
the comparison would become meaningless. 
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Figure 1. Total number of each class versus 

dimensionless size for T=5. 
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Figure 2. Relative distribution function error 

comparing to analytical solution for T=5. 
Fig 4 shows a similar plot to that of fig 3 but with a product agglomeration kernel. It 
also shows that PGCM of 10 classes and of 20 classes (here noted as PGCM-10 and 
PGCM-20) give much better results than CM-20. 
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Figure 3. Comparison of analytical solution and 

PGCM with 10 and 20 classes for a constant 
agglomeration kernel. 
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Figure 4. Comparison of analytical solution with 

PGCM of 10 and 20 classes and CM of 20 classes. 
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Figure 5. Comparison of analytical solution and 

PGCM with 10 classes for a constant agglomeration 
kernel. 
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Figure 6. Distribution functions of 2 classes for a 

constant agglomeration kernel obtained from 
PGCM with 10 classes. 

Fig 5 shows a comparison of analytical solution and PGCM-10 for variation of total 
number of particles versus time. The good agreement is clear. In figure 6 the 
distribution functions for two classes of 05.0 ϑ  and 05.4 ϑ  are shown. In figures 3-8 
other data are shown including distribution functions, classes evolution and also 
comparison between PGCM and CM. 
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Conclusion 
In this article a novel technique for solving population balance equations has been 
proposed. The new approach is formulated to enhance the classes method. The 
method has good accuracy in comparison with the original CM but with fewer defined 
classes. It predicts moments of PSD very well. For more accuracy the number of 
breakage classes should be increased. The numerical simulations have shown the 
ability of PGCM to predict the evolution of moments and main properties of the 
population balance of an asymptotic PSD by using few classes with a good accuracy. 
The plots of relative errors have revealed that PGCM is able to predict a large range 
of fractional moments with small errors. From a CFD viewpoint the new technique 
has a great advantage over others, as it needs surely lower computational time. 
In the future works, PGCM will be applied to predict a more complex system namely 
a bubble column. It is anticipated that this technique shows its advantages in this case 
as well. 
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