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Abstract  
Water management is critically important for polymer electrolyte membrane (PEM) fuel 

cells, and is complicated by electroosmotic flow of water from anode to cathode through the 
polymer electrolyte membrane. In this work, the characteristics of electroosmotic flow in a 
Nafion® membrane with non-uniform zeta potential were investigated. The Poisson-
Boltzmann and Navier-Stokes equations were used to model electrical double layer and the 
flow fields, respectively. The numerical results show the distorted electroosmotic velocity 
profiles resulting from the axial variation of the zeta potential.  
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1. Introduction 

Polymer electrolyte membrane (PEM) fuel cell is one of the most promising candidates as 
zero emission power sources for both stationary and mobile applications. The electrolyte is an 
ion conducting polymer and transport protons generated during the anodic oxidation of fuel to 
the cathode. Perfluorinated sulphonic membranes, such as Nafion®, are the ionomeric 
materials typically used in PEM fuel cells. The presence of the negative sulphonic charges on 
the wall surfaces of the nano-sized pores of the membrane results in the formation of a 
concentration gradient of protons close to the wall surfaces leading to a potential distribution 
in the electrolyte. This region is referred to as electric double layer, EDL. When subjected to 
the electrical field of an operating cell (e.g. in the range of about 3000 V/m), a significant 
electrokinetic body force will be developed, moving protons in the pores and dragging with 
them water molecules along the membrane. This phenomenon called electroosmotic flow, 
(EOF), increases the membrane resistance and degrades fuel cell performance [1]. 

The driving force for the EOF depends on the potential at the wall, referred to as zeta 
potential, ζ, and the strength of the applied electrical field. In general, zeta potential is a 
function of the ionic valence, the ionic concentration of the electrolyte solution, and the 
surface properties of the channel wall [2]. For a system with a simple electrolyte solution and 
a homogeneous channel wall, the zeta potential may be considered constant [3, 4]. As 
intuitively expected, these studies show that the EOF characteristics depend strongly on the 
value of the zeta potential. However non-uniform zeta potential distributions are commonly 
encountered due to impurities in the wall material, manufacturing defects, wall-adsorbed 
species, and variation in the solution pH. Although several researchers have investigated the 
effects of variable zeta potential on the EOF [5-8], to the knowledge of the authors, the study 
of EOF in Nafion® membrane is very limited.  

Figure 1 depicts schematically the mechanism of water transport in a PEM fuel cell. 
Water can enter to the anode and cathode if the fuel and oxidant are partially humidified. 
Also, water is produced in the cathode due to the oxygen reduction. Inside the membrane, 
water is transported in two ways: EOF and back diffusion from cathode to anode. Since the 
EOF increases the membrane resistance and reduces fuel cell performance, it is very 
important to determine and manage the extent of EOF in the membrane to optimize the PEM 
fuel cell performance.  
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The objective of this paper is to investigate the EOF in the electrolyte membrane with 
variable zeta potential. The Poisson–Boltzmann and the Navier–Stokes equations are solved 
numerically to study the electroosmotic flow in the membrane for which zeta potential 
decreases linearly from anode to cathode. 
 
2. Governing equations 
 
2.1. The charge distributions 

 According to the theory of electrostatic, the relationship between the electrical potential, 
ψ(r), and the local volumetric net-charge density, ρe, is described by the Poisson equation [3]: 
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Where ε is the dimensionless dielectric constant of the electrolyte, and ε0 is the permittivity of 
vacuum. A dielectric saturation model was developed by Paddison and Paul for fully hydrated 
Nafion® membranes. Based on their model, variations of dielectric constant as a function of 
distance from the pore wall, η, can be approximated mathematically as [3]: 
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The net-charge density for the proton-conducting membrane used in PEM fuel cell can be 
expressed in terms of the Boltzmann distribution as [3]: 
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Where z is the valence of the dissolved ions (H+, z=+1), n∞ is the ionic number concentration 
in the bulk solution, e is the fundamental electronic charge, kB is Boltzmann's constant, and T 
is the absolute temperature. Substitution of Eq. (3) into Eq. (1) and transforming it into non-
dimensional form results in the Poisson-Boltzmann equation as follows: 
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The non-dimensional variables are defined as: 
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Where r is the radial distance, a is the pore radius, and κ is Deby-Huckle parameter, which is 
a measure of the diffuse layer thickness and defined as [3]: 
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Fig. 1. Schematic of water transport and electroosmotic 
flow through the polymer electrolyte membrane in a PEM 

fuel cell. 
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The boundary conditions for Eq. (4) are as follows: 

at r*=0, 0*
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The equation of electrical potential is a nonlinear partial differential equation that must be 
solved numerically. A finite volume scheme with variable cell spacing was developed to 
discretize the equation. To facilitate convergence, the exponential term has been linearized as 
follows: 
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Where n refers to the iteration number. The resulting system of algebraic equations was 
solved using the Gauss-Seidel iterative technique, with successive overrelaxation employed to 
improve the convergence time. The pore length was divide into identical segments in axial 
direction while the grid spacings are reduced successively to condense the control volume 
sizes in the region near the wall, where the electroosmotic effect is significant. 
 
2.3. The velocity distributions 

The Navier-Stokes equations for a Newtonian laminar liquid flow with constant density, 
ρ, and viscosity, μ, in a horizontal cylindrical capillary under the influence of an external 
electric force can be expressed as [3]: 

02 =+∇−∇ EFpuµ  
representing the balance among the net viscous force, pressure force, and electric force acting 
on the fluid particles for the steady flow under consideration. The electric force is related to 
the charge density, ρe, and electric field strength, E as FE= ρeE. 
Eq. (9) can be non-dimensionalized as: 
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Where u* is the liquid velocity normalized with some reference velocity, U, considered as 1 
mm.s-1 throughout this work. FP

* and FE
* are non-dimensional pressure and electroosmotic 

body forces, respectively, defined as: 
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Where L is the pore length. Eq. (10) is subject to the following boundary conditions: 

at r*=0, 0*
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Where us
* is the dimensionless slip velocity and Kn=δ/a is Knudsen number and lattice 

spacing, δ, is about 3 Å for water [3]. 
Now, consider two successive equal-size segments along the pore, each with a different 

zeta potential, and suppose that the high zeta potential segment is in the downstream and the 
low zeta potential segment is in the upstream. The liquid in the downstream segment would 
have a higher electroosmotic velocity, and the liquid in the upstream would have a lower 
electroosmotic velocity. This will cause different flow rate in different segments violating the 
continuity condition. The practical solution is that a vacuum tends to form between these two 
segments since the liquid in the downstream segment is moving faster than that in the 
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upstream segment. This will induce a negative pressure between these two segments, and 
slow the flow in downstream segment and increase the flow in upstream segment. In this way, 
the continuity condition will be satisfied. This is also why Eq. (10) has an induced pressure 
gradient term. 

The resulting potential distributions are inserted into Eq. (10) to obtain the flow fields. 
The induced pressure gradient term in Eq. (2) will introduce more complexity into the 
numerical solution. To tackle this issue, Eq. (2) is initially solved numerically for the first and 
second sections by guessing an induced pressure gradient. The pore velocity profile is then 
obtained by solving the resulting tridiagonal matrix using a Thomas algorithm. Since the 
volumetric flow rates in the first and second segments must be identical, the induced pressure 
gradient in the second segment is corrected by the Newton-Raphson method, and used as an 
initial input for the third section. This technique is continued until the pressure gradient in the 
last segment is determined. For the same anode and cathode pressures (i.e., atmospheric 
pressure), the following equation must be satisfied: 

∫ =
∂
∂

=∆ 0dL
L
PP  

The initially assumed pressure gradient needs to be revised several times until a complete 
convergence is achieved. 
 
3. Results and discussions 

The above equations and the matching boundary conditions for the EDL field and the 
flow field are solved numerically. All of the simulations are based on fully hydrated Nafion® 
membrane under the condition that the water content of the membrane on the anode side is 
sufficiently high to replenish the water and maintain the membrane hydration. The parameters 
and physical properties used in the simulation are listed in Table 1. 

 
Table 1 
Parameters and properties used in the present PEM simulations 
Quantity Value 
Cell temperature 80 °C 
Pore water viscosity 3.6×10-4 kg.m-1.s-1 
Pore water density 980 kg.m-3 
Cell voltage 0.70 V 
Fixed charge site concentration 1.2×10-3 mol.cm-3 
Wet membrane thickness 2.31×10-4 m 
Pore diameter 5×10-9 m 

 
Figure 2 shows the velocity field in a single pore with a linearly decreasing zeta potential 

from 150 mV to 50 mV. For a simple EOF in a nanochannel with uniform zeta potential, the 
plug-like velocity profile is expected. However, if the zeta potential is non-uniform, such as 
specified in this work, the net-charge density within liquid varies axially. Meanwhile, the 
applied electrical field strength, which depends on the electrical current and the conductivity 
of the electrolyte solution, is constant axially. Consequently, the electrical body force 
generating the EOF, which depends on the net-charge density and the electrical field strength, 
is different from segment to segment. In order to achieve the same flow rate as that in the next 
segment, with a higher zeta potential, a negative pressure gradient (the pressure decreases in 
the flow direction) is introduced to increase the flow rate. As shown in Figure 3, the pressure 
starts decreasing from a maximum pressure to the atmospheric pressure at the exit. 

As shown in Figure 2, for the segments with higher zeta potentials, the electroosmotic 
velocity profile is distorted by the positive pressure gradient. The velocity fields are changing 
from Couette-type flow at the pore inlet to the plug flow at the middle of the pore and  
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eventually to the near-parabolic distributions at the pore outlet, as the zeta potential 

decreases and the induced pressure gradient prevails along the axial direction.  
 
 
4. Conclusion 

The Poisson-Boltzmann and Navier-Stokes equations are solved numerically to determine 
the electroosmotic flow in a Nafion® membrane with non-uniform zeta potential distribution. 
The results show that the different types of velocity profiles are developed along the 
membrane. The present results can be used to study the effects of the membrane surface 
characteristics on the electroosmotic drag in PEM fuel cells. 
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Fig. 2. The velocity field 

Fig. 3. Pressure distribution in pore length 
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Nomenclature 
a pore radius (m) U reference velocity (e.g. 1 mm.s-1) 
e fundamental electronic charge (1.602×10-19 C) u* non-dimensional velocity 
E electric field strength (V.m-1) us

* non-dimensional slip velocity 
E* non-dimensional term z valence of the dissolved ions 
FE

* dimensionless electroosmotic force Greek letters 
FP

* non-dimensional pressure force ε dimensionless dielectric constant 
Kn Knudsen number = δ/ a ε0 permittivity of vacuum (8.85×10-12 C2.N-1.m-2) 
kB Boltzmann constant (1.381×10-23 J.K-1) κ Debye-Huckle parameter (m-1) 
L pore length (m) μ viscosity (Pa.s) 
M* non-dimensional term η distance from the pore wall (Å) 
n iteration number ψ potential (V) 
n∞ bulk ionic number concentration (m-3) ψ* non-dimensional potential 
P pressure (Pa) ρ density (kg.m-3) 
Pmax maximum pressure (Pa) ρe net volumetric charge density (C.m-3) 
r pore radius (m) δ lattice spacing (e.g. 3×10-10) 
r* non-dimensional pore radius Δ difference 
T temperature (K) ζ zeta potential (V) 
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