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Abstract

Acid fracturing is one of the widely used techniques for stimulating
well production. It is an alternative to proppant fracturing for limestone
or dolomite formations. The success of acid fracturing is dependent on
both the creation of effective fracture conductivity and fracture
penetration. Although there has been a significant amount of studies on
the acid fracturing process, most of these have concentrated on the acid
penetration distance with only a few dealing with fracture conductivity.
Accurate determination. of this parameter is critical for an adequate
design of fracturing jobs and project investment prospects. Due to the
stochastic process «inherent in acid fracturing, attempts at modelling
have been met with challenges, particularly in predicting conductivity.
In-this study, an intelligent model was developed to predict acid
fracture conductivity. Acid dissolving power and injection rate as the
treatment parameters and rock embedment strength as the formation
parameter are considered at different closure stresses, and ultimately,
fracture conductivity was anticipated using the suggested model. The
results showed an excellent match with the experimental data compared
to common industrial models. Formation lithology played a substantial
role in acid fracture conductivity and lumped models were not adequate
to predict fracture conductivity.
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Introduction

Acid fracturing is typically conducted in carbonate reservoirs, which make up approximately Y + 7. of
the worldwide hydrocarbon reserves. In such a treatment, acid or a fluid used on a pad ahead of the
acid is injected down the well casing or tubing at rates greater than the rate at which the fluid can flow
into the reservoir matrix. This injection yields a build-up in wellbore pressure sufficient to overcome
compressive earth stresses and the formation’s tensile strength. Failure then occurs, forming a crack
(fracture). Continued fluid injection increases the fracture’s length and width. A flow channel is
created due to reaction of acid injected into the fracture and remains open when the well is put back
into production (Williams et al., Y4aVYY; Economides et al., Y44 ¢). Optimization of live acid
penetration distance and conductivity of created fracture are the main targets of designing acid
fracturing treatments. Acid fracture conductivity is defined as a measure of the capacity for fluid flow
through a fracture. The amount of rock dissolved, the fracture surface etching patterns, the rock
strength and the closure stress impact fracture conductivity. Conductivity.is created only if the less
dissolved parts act like pillars to keep more dissolved parts open (Mou, Y+ + 4; Broaddus, Y4 1A;
Nierode, Y 4 Y Y; Anderson, Y 4 A 4). In order to predict acid fracturing, there needs to be a model for
conductivity which can accurately anticipate fracture conductivity against closure stress.

Acid fracturing conductivity models date back to the early Y4V +’s. In the past, there have been
studies that predict the conductivity of acid fracturing correlated to the formation rock, mechanical
properties and geometry of the fracture through experiments (Broaddus, Y 4 1A; Nierode, Y4 VY,
Anderson, Y4 A4, Van Domelen, Y44Y; Beg, Y44 71; Ruffet, Y 44V; Navarrete, Y 44 A; Gong,

Y 4414). An acid fracture correlation consists of two parts: fracture conductivity at zero closure stress
and the rate of conductivity change with closure stress. There are two possible ways to develop a
correlation: theoretical and empirical. No conductivity correlation accurately predicts acid fracture
conductivity, despite the theoretical and experimental work on the subject (Nierode, Y4V Y; Gong,
Y 4449; Pournik, ¥ * + Y; Mou, ¥ * + 4). Nierode and Kruk () 4 YY) developed a correlation that is the
most widely used in industry and requires-experimental data on acid fracture conductivity from a
laboratory test. The resulting conductivity is based on the volume of rock dissolved and the rock’s
mechanical strength ((Nierode, N 4V Y). Nasr-EI-Din et al. (Y * + A) suggest that the correlations
developed by Nierode and Kruk were lumped together rather than separated by lithology. They
modified the correlation by graphing and evaluating the data again both as a lumped set and as
individual sets by lithology. The recalculated correlations kept the same form as the original ones, but
made the constants different and were more precise (Nasr-EI-Din, Y + + A). Correlations since have
attempted to include parameters that quantify the fracture surface’s roughness, but these correlations
consider idealized analytical solutions that generalize the mechanism of conductivity.

The objective of this work is to develop a precise model to estimate conductivity for acid fracturing
treatment based on a new approach in function approximation modelling. Predicting conductivity is
difficult because it is a function of the rock’s strength, heterogeneities present in the rock, the
transportation and dissolution of acid, the closure stress and other variables. The study uses a
treatment parameter called dissolved rock equivalent conductivity (DREC) that stems from the total
amount of rock dissolved by injected acid at zero stress. Then lets the conductivity decline as the
fracture width reduces when closure stress is applied. DREC derived according to the cubic law
indicates the acid dissolving power and the total volume of injected acid proportional to the geometry
of the fracture created. Due to the complication of predicting acid fracture conductivity and also the
capability of artificial neural networks in modelling, in this paper, a robust intelligent model based on
neural networks is developed to predict acid fracture conductivity accurately. The input data are
considered as a lumped set and as individual sets by lithology to provide a better understanding of the
formation lithology effect. Ultimately, the resulting conductivity given by ANN models is compared
to prior models.

Development of Artificial Neural Network Model
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An artificial neural network is defined as a powerful data modelling tool that is able to capture and
represent complex input/output relationships. The true power of neural networks lies in their ability to
represent both linear and non-linear relationships, as well as to learn of these relationships directly
from the data being modelled. Traditional linear models are simply insufficient when it comes to
modelling data that contain nonlinear characteristics (Haykin, ¥ « + ¢).

Due to the complication of acid fracture conductivity trends versus the effective parameters, an
artificial neural network is an appropriate tool to obtain fracture conductivity. In order to generate a
neural network model, Nierode and Kruk () 4 YY) experimental data sets are applied as input data.
One hundred and sixteen data sets including acid fracture conductivity in different closure stresses and
various rock embedment strengths for different formation lithology (dolomite, limestone and chalk)
are considered as modelling data. Table Y shows the range of experimental data used as the input
variables in this study.

Table Y. The range of experimental data used as the input variables
Parameters Minimum Maximum Average Standard Deviation

DREC (md-in) cevaacean | A EYGe s YYTeEATYAY, ¢ Y
RES (Psi) ol YRR YooV, Yéconq,v.
Closure stress (Psi) . Veeus Y avq Yeivg,0¢
Fracture Conductivity (md-in) ), Y Vet v oo e YAGCEQ VE£TYo, 1Y

An artificial neural network model is developed based on the following algorithm, including seven
main sections: ). Reading the data Y. Preparing the data Y. Dividing the data into training and test
data ¢. Creating a new network o. Training the'network 7. Testing the network Y. Saving the results
and displaying the best results. Figure Y illustrates the main algorithm used for the development of the
ANN models.
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Fig ). Main steps in the development of ANN models

In order to study of the effect of formation lithology on accuracy ANN developed models, three types
of data sets, based-on rock types are considered as input data. Three ANN models are developed
according to each type of data set. The first model is generated based on all input data including the
data of three rock types, called an ANN AD model. The second model is an ANN Limestone model
which only considers limestone data and the last model is the ANN Dolomite model created based on
only dolomite rock type data. Finally, the results of these three data sets are compared to reveal the
effect of lithology on acid fracture conductivity. In this study, A+ 7. of the data are selected for
training and validation, and the remaining data are applied to test the network randomly. Different
neural network architectures, train algorithms and transfer functions are tested to find a suitable model
with minimum error. The average absolute relative error (AARE) and regression coefficient (R) are
criteria for evaluating the capability of different models.

Results and Discussion
Ultimately, a feed-forward back propagation network was prepared in which the weight and bias

values of the network were updated according to the Levenberg-Marquardt algorithm. The best
architecture of the network was selected for each model based on the average absolute relative error
(AARE) and regression coefficient after being run Y+« + times. Table Y shows the specifications of the
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best ANN models in each data set for training and testing the data. All three purposed models have
two hidden layers in which the best architecture of the network has Y neurons. Hyperbolic tangent
sigmoid (Tansig) and log-sigmoid (Logsig) transfer functions have the highest accuracy for the
dolomite and limestone data sets respectively. The acid fracture conductivity values predicted by the
best ANN models for the three data sets are illustrated versus the experimental data in figures ¥ to ¢.

Table Y. Parameters of the best neural network models

Model ANN AD ANN Dolomite ANN Limestone
Transfer Function Logsig Tansig Logsig
Train Algorithm Trainlm Trainlm Trainlm

No. Hidden Layers Al Al ¥

No. neurons Ye[ee] WYY WV Y]
ARE train data (%) v, GLAEVA Yy
ARE test data (%) A,08) Y,AAYO Moot
Reg. coefficient for train data +,4474 +,944Y \

Reg. coefficient for test data N +,94VA +,4449y
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Fig Y. Values predicted by ANN AD vs. the experimental data for the training and test data
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Fig ¥. Values predicted by ANN Dolomite vs. the experimental data for the training and test data
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Fig £. Values predicted by ANN Limestone vs. the experimental data for thetraining and test data

As the results demonstrate, there is a perfect match for all the ANN-models. However, the precision of
the models in which the rock type data are entered exclusively are very high. The average relative
error for the test data using the ANN Limestone and ANN Dolomite models are +,1eo¢7 and Y,AAYeY
respectively. It indicates that the developed ANN models which consider individual sets by lithology
are much more accurate, as is shown in figures ¥ and £. In other words, it confirms that the rock type
plays a significant role in the prediction of acid fracture conductivity and must be given considerable
attention in modelling.

Due to the wide application of Nierode and Kruk’s correlation in the industry, the results of ANN
models in comparison with those of Nierode and Kruk’s model are shown in figures © to V. The results
show that the acid fracture conductivity values predicted by all three ANN models have a better match
to the experimental data compared to Nierode and Kruk’s model. However, the match is more precise
for the ANN Limestone model and then for the ANN Dolomite model.

16

® ANN AD [ ]
® N&K

Predicted Acid Fracture Conductivity

16

Experimental Acid Fracture Conductivity

Fig ¢. The comparison between measured and predicted conductivities using the ANN AD model and the Nierode and
Kruk model for all closure stresses.
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Fig 1. The comparison between measured and predicted conductivities using the ANN Dolomite model and the
Nierode and Kruk model for all closure stresses.
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Fig Y. The comparison between the measured and predicted conductivities using the ANN Limestone model and the
Nierode and Kruk model for all closure stresses.

In this study, the results of the three created models are compared with the results of the Nierode and
Kruk (N&K) and the Nasr-EI-Din (NSD) models due to their convenience, the fact that there is no
need for parameters relating to the fracture surface profiles and the similarity of the input variables.
Figure A illustrates the average relative error of the different models at various closure stresses. As the
figure depicts, the ANN Limestone model and the ANN Dolomite predict acid fracture conductivity
more accurately compared to other models. The accuracy of these models is demonstrated in this
figure compared with prior models’ at low, middle and high closure stresses. Since N&K presented a
general correlation for the prediction of acid fracture conductivity for limestone and dolomite rock
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types, the data are considered as a lumped set and as individual sets by lithology to provide a better
understanding of the effect of rock type.
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Fig A. Average relative error of the predictive models at various closure stresses.

In order to evaluate the predictive capability of the generated models, the effect of different dissolved
rock equivalent conductivity (DERC) as a treatment parameter and the rock embedment strength
(RES) as formation strength parameter are investigated on a limestone sample. Table Y shows the
values of these parameters and the accuracy of each model for predicting acid fracture conductivity for
Canyon limestone. The relative error of each model is based on an arithmetic average of different
closure stresses from « to v+« + psi.

Tables Y. Accuracy of different models for predicting fracture conductivity for the Canyon Limestone

Model N&K NSD ANN AD
Rock Type Canyon Limestone Canyon Limestone Canyon Limestone
DREC (md-in) £,V .Y £,1%) Y IR ATIY

RES (psi) YoV YoV TV
Average Relative Error (%) Ya,Y A, g0 VA

As table Y shows, the ANN AD model is more accurate than the two other models. Figures Y+ to )Y
illustrate the predicted values of acid fracture conductivity by the N&K, NSD and ANN AD models at
low, middle and high values of treatment parameter versus different closure stress for this sample.
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Fig Y +. Acid fracture conductivity predicted by the N&K model for different treatment parameters versus various

closure stresses.

=
[+.4]

—8— DREC=11
—8— DREC=15
—&— DREC=20

=
=]

= e
[ =Y

Predicted Acid Fracture Conductivity
Based on NSD Model (Limestone) (Ln)
=
(=]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Closure Stress (Psi)

Fig VY. Acid fracture conductivity predicted by the NSD model for different treatment parameters versus various
closure stresses.
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Fig VY. Acid fracture conductivity predicted by the ANN AD model for different treatment parameters versus various
closure stresses;

There is a general trend that states that as the closure stress increases the fracture conductivity
decreases. The N&K and NSD models predict the trend similarly. The fracture conductivity predicted
by both models decreases versus the increase of the closure stress with the same and constant rates for
different values of DREC. While, the ANN AD maodel considers the role of DREC, in particular. As
figure VY shows, in the low dissolved rock equivalent conductivity, fracture conductivity decreases
naturally as the closure stress increases.:Whereas, the rate of decrease in the middle dissolved rock
equivalent conductivity increases sharply and in the high dissolved rock equivalent conductivity the
trend goes down again. Therefore, it can be concluded that there is an optimum dissolved rock
equivalent conductivity value for achieving high fracture conductivity. In other words, at the low
closure stress, the middle values of treatment parameter create conductivity the same as (or even more)
the high values of treatment parameter. While at the high closure stress, to achieve proper fracture
conductivity, the treatment parameter must be raised dramatically, which affects the expense of the
acid fracturing jobs directly. For instance, when the dissolved rock equivalent increases from ‘) to Y+,
acid fracture conductivity increases only ©+7 at low closure stress. While at high closure stress the
fracture conductivity increases by Y- +7 for this range, which reveals the significant role of formation
closure stress in the design and implementation of acid fracturing treatments.

Conclusions

Acid fracture conductivity is a crucial parameter in acid fracturing design. The prediction of this
parameter has been a serious challenge for scientists and researchers over the past ¢« years. By
considering the capabilities of intelligent modelling techniques, in this study a feed-forward multi-
layer perceptron artificial neural network with a back-propagation algorithm was developed to predict
acid fracture conductivity. One hundred and sixteen of experimental data, including dissolved rock
equivalent conductivity as a treatment parameter and rock embedment strength as a formation strength
parameter, were inputted at different closure stresses to enhance the universality of the ANN AD
model. The results showed an excellent fit between the predicted values and the experimental data.
The comparison of the fracture conductivity predicted by the ANN AD model with the other common
models revealed that the accuracy of the neural model is very high. However, the precision of all the
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models decreased as the closure stress increased which reflects the complication and the difficulty of
the acid fracturing design in the high closure stress. In order to investigate the effect of lithology, two
ANN models based on limestone and dolomite data were developed separately. The results of these
ANN models were also more accurate compared to other common models and even to the ANN AD
model. The ANN Limestone model predicts fracture conductivity Y o and Y * times more precisely
than the N&K and NSD models. In addition to the high accuracy of the ANN models, they can
anticipate the behavior of the fracture conductivity versus the different closure stresses, which differ
from the common models. While the current models predict this trend linearly, the ANN model
illustrated that the behavior is different at low, middle and high closure stresses. The results of this
study showed, formation lithology plays a substantial role to predict acid fracture conductivity. Since
most carbonate reservoir rocks are not pure dolomite or limestone, it is recommended that the
percentage of limestone and dolomite are considered as input data and the effect of mineralogy is
investigated quantitatively in the next studies.

Nomenclature
DREC Dissolved rock equivalent conductivity

1 Measured fracture conductivity
i

Mean of the measured fracture conductivities

n Number of data
i Predicted fracture conductivity
B Mean of the predicted fracture conductivities

RES  Rock embedment strength

WK Fracture conductivity
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Appendix
Calculations of absolute relative error (ARE) and regression coefficient (R) as a criteria for evaluating the
capability of ANN developed models.

predicted measured
ARE = XX ngﬁii x 100 ()
R — E?:n(m[_ﬁ}l:p[_ﬂ (\‘)

dz?:nﬁm[—ﬁ}""(p[—ﬁ}z
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