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Abstract  

 

Acid fracturing is one of the widely used techniques for stimulating 

well production. It is an alternative to proppant fracturing for limestone 

or dolomite formations. The success of acid fracturing is dependent on 

both the creation of effective fracture conductivity and fracture 

penetration. Although there has been a significant amount of studies on 

the acid fracturing process, most of these have concentrated on the acid 

penetration distance with only a few dealing with fracture conductivity. 

Accurate determination of this parameter is critical for an adequate 

design of fracturing jobs and project investment prospects. Due to the 

stochastic process inherent in acid fracturing, attempts at modelling 

have been met with challenges, particularly in predicting conductivity. 

In this study, an intelligent model was developed to predict acid 

fracture conductivity. Acid dissolving power and injection rate as the 

treatment parameters and rock embedment strength as the formation 

parameter are considered at different closure stresses, and ultimately, 

fracture conductivity was anticipated using the suggested model. The 

results showed an excellent match with the experimental data compared 

to common industrial models. Formation lithology played a substantial 

role in acid fracture conductivity and lumped models were not adequate 

to predict fracture conductivity.  
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Introduction 

Acid fracturing is typically conducted in carbonate reservoirs, which make up approximately %07 of 

the worldwide hydrocarbon reserves. In such a treatment, acid or a fluid used on a pad ahead of the 

acid is injected down the well casing or tubing at rates greater than the rate at which the fluid can flow 

into the reservoir matrix. This injection yields a build-up in wellbore pressure sufficient to overcome 

compressive earth stresses and the formation’s tensile strength. Failure then occurs, forming a crack 

(fracture). Continued fluid injection increases the fracture’s length and width. A flow channel is 

created due to reaction of acid injected into the fracture and remains open when the well is put back 

into production (Williams et al., 27%1; Economides et al., 2771). Optimization of live acid 

penetration distance and conductivity of created fracture are the main targets of designing acid 

fracturing treatments. Acid fracture conductivity is defined as a measure of the capacity for fluid flow 

through a fracture. The amount of rock dissolved, the fracture surface etching patterns, the rock 

strength and the closure stress impact fracture conductivity. Conductivity is created only if the less 

dissolved parts act like pillars to keep more dissolved parts open (Mou, 1007; Broaddus, 2791; 

Nierode, 27%1; Anderson, 2717). In order to predict acid fracturing, there needs to be a model for 

conductivity which can accurately anticipate fracture conductivity against closure stress. 

Acid fracturing conductivity models date back to the early 27%0’s. In the past, there have been 

studies that predict the conductivity of acid fracturing correlated to the formation rock, mechanical 

properties and geometry of the fracture through experiments (Broaddus, 2791; Nierode, 27%1; 

Anderson, 2717, Van Domelen, 2771; Beg, 2779; Ruffet, 277%; Navarrete, 2771; Gong, 

2777). An acid fracture correlation consists of two parts: fracture conductivity at zero closure stress 

and the rate of conductivity change with closure stress. There are two possible ways to develop a 

correlation: theoretical and empirical. No conductivity correlation accurately predicts acid fracture 

conductivity, despite the theoretical and experimental work on the subject (Nierode, 27%1; Gong, 

2777; Pournik, 100%; Mou, 1007). Nierode and Kruk (27%1) developed a correlation that is the 

most widely used in industry and requires experimental data on acid fracture conductivity from a 

laboratory test. The resulting conductivity is based on the volume of rock dissolved and the rock’s 

mechanical strength ((Nierode, 27%1). Nasr-El-Din et al. (1001) suggest that the correlations 

developed by Nierode and Kruk were lumped together rather than separated by lithology. They 

modified the correlation by graphing and evaluating the data again both as a lumped set and as 

individual sets by lithology. The recalculated correlations kept the same form as the original ones, but 

made the constants different and were more precise (Nasr-El-Din, 1001). Correlations since have 

attempted to include parameters that quantify the fracture surface’s roughness, but these correlations 

consider idealized analytical solutions that generalize the mechanism of conductivity.  

The objective of this work is to develop a precise model to estimate conductivity for acid fracturing 

treatment based on a new approach in function approximation modelling. Predicting conductivity is 

difficult because it is a function of the rock’s strength, heterogeneities present in the rock, the 

transportation and dissolution of acid, the closure stress and other variables. The study uses a 

treatment parameter called dissolved rock equivalent conductivity (DREC) that stems from the total 

amount of rock dissolved by injected acid at zero stress. Then lets the conductivity decline as the 

fracture width reduces when closure stress is applied. DREC derived according to the cubic law 

indicates the acid dissolving power and the total volume of injected acid proportional to the geometry 

of the fracture created. Due to the complication of predicting acid fracture conductivity and also the 

capability of artificial neural networks in modelling, in this paper, a robust intelligent model based on 

neural networks is developed to predict acid fracture conductivity accurately. The input data are 

considered as a lumped set and as individual sets by lithology to provide a better understanding of the 

formation lithology effect. Ultimately, the resulting conductivity given by ANN models is compared 

to prior models. 

 

Development of Artificial Neural Network Model 
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An artificial neural network is defined as a powerful data modelling tool that is able to capture and 

represent complex input/output relationships. The true power of neural networks lies in their ability to 

represent both linear and non-linear relationships, as well as to learn of these relationships directly 

from the data being modelled. Traditional linear models are simply insufficient when it comes to 

modelling data that contain nonlinear characteristics (Haykin, 1001).   

Due to the complication of acid fracture conductivity trends versus the effective parameters, an 

artificial neural network is an appropriate tool to obtain fracture conductivity. In order to generate a 

neural network model, Nierode and Kruk (27%1) experimental data sets are applied as input data. 

One hundred and sixteen data sets including acid fracture conductivity in different closure stresses and 

various rock embedment strengths for different formation lithology (dolomite, limestone and chalk) 

are considered as modelling data. Table 2 shows the range of experimental data used as the input 

variables in this study. 

 
Table 1. The range of experimental data used as the input variables 

 Parameters  Minimum   Maximum   Average    Standard Deviation  

 DREC (md-in)  000333  00303330333  0003740333  09,072,0904670  

 RES (Psi)  00,33  000033  000043  9700,2603  

 Closure stress (Psi)  3  40333  9,202 907,7607  

 Fracture Conductivity  (md-in)  069  407330333  0000723 47700006,9  

 
 An artificial neural network model is developed based on the following algorithm, including seven 

main sections: 2. Reading the data 1. Preparing the data 1. Dividing the data into training and test 

data 1. Creating a new network 5. Training the network 9. Testing the network %. Saving the results 

and displaying the best results. Figure 2 illustrates the main algorithm used for the development of the 

ANN models.  
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Fig 1. Main steps in the development of ANN models 

 

In order to study of the effect of formation lithology on accuracy ANN developed models, three types 

of data sets, based on rock types are considered as input data. Three ANN models are developed 

according to each type of data set. The first model is generated based on all input data including the 

data of three rock types, called an ANN AD model. The second model is an ANN Limestone model 

which only considers limestone data and the last model is the ANN Dolomite model created based on 

only dolomite rock type data. Finally, the results of these three data sets are compared to reveal the 

effect of lithology on acid fracture conductivity. In this study, 107 of the data are selected for 

training and validation, and the remaining data are applied to test the network randomly. Different 

neural network architectures, train algorithms and transfer functions are tested to find a suitable model 

with minimum error. The average absolute relative error (AARE) and regression coefficient (R) are 

criteria for evaluating the capability of different models. 

 

Results and Discussion 
Ultimately, a feed-forward back propagation network was prepared in which the weight and bias 

values of the network were updated according to the Levenberg-Marquardt algorithm. The best 

architecture of the network was selected for each model based on the average absolute relative error 

(AARE) and regression coefficient after being run 0333 times. Table 9 shows the specifications of the 
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best ANN models in each data set for training and testing the data. All three purposed models have 

two hidden layers in which the best architecture of the network has 00 neurons. Hyperbolic tangent 

sigmoid (Tansig) and log-sigmoid (Logsig) transfer functions have the highest accuracy for the 

dolomite and limestone data sets respectively. The acid fracture conductivity values predicted by the 

best ANN models for the three data sets are illustrated versus the experimental data in figures 9 to 7. 

 

Table 2. Parameters of the best neural network models 

Model ANN AD ANN Dolomite ANN Limestone 

Transfer Function Logsig Tansig Logsig 

Train Algorithm Trainlm Trainlm Trainlm 

No. Hidden Layers 9 9 9 

No. neurons 03 [0 0] 00 [0 03] 00 [03 0] 

ARE train data (%) 063,7 362700 36333309 

ARE test data (%) 06070 060040 36,007 

Reg. coefficient for train data 3622,2 362229 0 

Reg. coefficient for test data 36277, 362240 362224 

 

 
Fig 2. Values predicted by ANN AD vs. the experimental data for the training and test data 

 

 
Fig 3. Values predicted by ANN Dolomite vs. the experimental data for the training and test data 
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Fig 4. Values predicted by ANN Limestone vs. the experimental data for the training and test data 

 

As the results demonstrate, there is a perfect match for all the ANN models. However, the precision of 

the models in which the rock type data are entered exclusively are very high. The average relative 

error for the test data using the ANN Limestone and ANN Dolomite models are 36,0070 and 0600400 

respectively. It indicates that the developed ANN models which consider individual sets by lithology 

are much more accurate, as is shown in figures 0 and 7. In other words, it confirms that the rock type 

plays a significant role in the prediction of acid fracture conductivity and must be given considerable 

attention in modelling.  

Due to the wide application of Nierode and Kruk’s correlation in the industry, the results of ANN 

models in comparison with those of Nierode and Kruk’s model are shown in figures 0 to 4. The results 

show that the acid fracture conductivity values predicted by all three ANN models have a better match 

to the experimental data compared to Nierode and Kruk’s model. However, the match is more precise 

for the ANN Limestone model and then for the ANN Dolomite model.  

 

 

 
Fig 5. The comparison between measured and predicted conductivities using the ANN AD model and the Nierode and 

Kruk model for all closure stresses. 

 

www.SID.ir


www.SID.ir

Arc
hive

 of
 S

ID

 

  

 

 
Fig 6. The comparison between measured and predicted conductivities using the ANN Dolomite model and the 

Nierode and Kruk model for all closure stresses. 

 

 
Fig 7. The comparison between the measured and predicted conductivities using the ANN Limestone model and the 

Nierode and Kruk model for all closure stresses. 

 

In this study, the results of the three created models are compared with the results of the Nierode and 

Kruk (N&K) and the Nasr-El-Din (NSD) models due to their convenience, the fact that there is no 

need for parameters relating to the fracture surface profiles and the similarity of the input variables. 

Figure 0 illustrates the average relative error of the different models at various closure stresses. As the 

figure depicts, the ANN Limestone model and the ANN Dolomite predict acid fracture conductivity 

more accurately compared to other models. The accuracy of these models is demonstrated in this 

figure compared with prior models’ at low, middle and high closure stresses. Since N&K presented a 

general correlation for the prediction of acid fracture conductivity for limestone and dolomite rock 
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types, the data are considered as a lumped set and as individual sets by lithology to provide a better 

understanding of the effect of rock type.  

 

 
Fig 8. Average relative error of the predictive models at various closure stresses. 

 

In order to evaluate the predictive capability of the generated models, the effect of different dissolved 

rock equivalent conductivity (DERC) as a treatment parameter and the rock embedment strength 

(RES) as formation strength parameter are investigated on a limestone sample. Table 0 shows the 

values of these parameters and the accuracy of each model for predicting acid fracture conductivity for 

Canyon limestone. The relative error of each model is based on an arithmetic average of different 

closure stresses from 3 to 4333 psi. 

 

Tables 3. Accuracy of different models for predicting fracture conductivity for the Canyon Limestone 

Model  N&K NSD ANN AD 

Rock Type Canyon Limestone Canyon Limestone Canyon Limestone 

DREC (md-in) 76,*03 4 76,*03 4 76,*03 4 

RES (psi) 03433 03433 03433 

Average Relative Error (%) 03693 0670 0603 

 

As table 0 shows, the ANN AD model is more accurate than the two other models. Figures 03 to 09 

illustrate the predicted values of acid fracture conductivity by the N&K, NSD and ANN AD models at 

low, middle and high values of treatment parameter versus different closure stress for this sample.  
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Fig 11. Acid fracture conductivity predicted by the N&K model for different treatment parameters versus various 

closure stresses. 

 

 
Fig 11. Acid fracture conductivity predicted by the NSD model for different treatment parameters versus various 

closure stresses. 
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Fig 12. Acid fracture conductivity predicted by the ANN AD model for different treatment parameters versus various 

closure stresses. 

 

There is a general trend that states that as the closure stress increases the fracture conductivity 

decreases. The N&K and NSD models predict the trend similarly. The fracture conductivity predicted 

by both models decreases versus the increase of the closure stress with the same and constant rates for 

different values of DREC. While, the ANN AD model considers the role of DREC, in particular. As 

figure 09 shows, in the low dissolved rock equivalent conductivity, fracture conductivity decreases 

naturally as the closure stress increases. Whereas, the rate of decrease in the middle dissolved rock 

equivalent conductivity increases sharply and in the high dissolved rock equivalent conductivity the 

trend goes down again. Therefore, it can be concluded that there is an optimum dissolved rock 

equivalent conductivity value for achieving high fracture conductivity. In other words, at the low 

closure stress, the middle values of treatment parameter create conductivity the same as (or even more) 

the high values of treatment parameter. While at the high closure stress, to achieve proper fracture 

conductivity, the treatment parameter must be raised dramatically, which affects the expense of the 

acid fracturing jobs directly. For instance, when the dissolved rock equivalent increases from 00 to 93, 

acid fracture conductivity increases only 030 at low closure stress. While at high closure stress the 

fracture conductivity increases by 9330 for this range, which reveals the significant role of formation 

closure stress in the design and implementation of acid fracturing treatments.  

 

 

Conclusions 
Acid fracture conductivity is a crucial parameter in acid fracturing design. The prediction of this 

parameter has been a serious challenge for scientists and researchers over the past 10 years. By 

considering the capabilities of intelligent modelling techniques, in this study a feed-forward multi-

layer perceptron artificial neural network with a back-propagation algorithm was developed to predict 

acid fracture conductivity. One hundred and sixteen of experimental data, including dissolved rock 

equivalent conductivity as a treatment parameter and rock embedment strength as a formation strength 

parameter, were inputted at different closure stresses to enhance the universality of the ANN AD 

model. The results showed an excellent fit between the predicted values and the experimental data. 

The comparison of the fracture conductivity predicted by the ANN AD model with the other common 

models revealed that the accuracy of the neural model is very high. However, the precision of all the 
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models decreased as the closure stress increased which reflects the complication and the difficulty of 

the acid fracturing design in the high closure stress. In order to investigate the effect of lithology, two 

ANN models based on limestone and dolomite data were developed separately. The results of these 

ANN models were also more accurate compared to other common models and even to the ANN AD 

model. The ANN Limestone model predicts fracture conductivity 25 and 20 times more precisely 

than the N&K and NSD models. In addition to the high accuracy of the ANN models, they can 

anticipate the behavior of the fracture conductivity versus the different closure stresses, which differ 

from the common models. While the current models predict this trend linearly, the ANN model 

illustrated that the behavior is different at low, middle and high closure stresses. The results of this 

study showed, formation lithology plays a substantial role to predict acid fracture conductivity. Since 

most carbonate reservoir rocks are not pure dolomite or limestone, it is recommended that the 

percentage of limestone and dolomite are considered as input data and the effect of mineralogy is 

investigated quantitatively in the next studies. 

 

Nomenclature 

 Dissolved rock equivalent conductivity 

 Measured fracture conductivity 

 Mean of the measured fracture conductivities 

n Number of data 

 Predicted fracture conductivity 

 Mean of the predicted fracture conductivities 

 Rock embedment strength 

 
Fracture conductivity 
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Appendix 
Calculations of absolute relative error (ARE) and regression coefficient (R) as a criteria for evaluating the 

capability of ANN developed models. 
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