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Abstract 
Foam drilling is increasingly used to develop low pressure reservoir or highly depleted mature reservoirs 
because of minimizing the formation damage and potential hazardous drilling problems. Prediction of the 
cuttings concentration in the wellbore annulus as a function of operational drilling parameters such as wellbore 
geometry, pumping rate, drilling fluid rheology and density, and maximum drilling rate is very important for 
optimizing these parameters. This paper describes a simple and more reliable artificial neural network (ANN) 
method and multiple linear regression (MLR) to predict cuttings concentration during foam drilling operation. 
This model is applicable for various borehole conditions using some critical parameters associated with foam 
velocity, foam quality, hole geometry, subsurface condition (pressure and temperature), and pipe rotation. The 
average absolute percent relative error (AAPE) between the experimental cuttings concentration and ANN 
model is less than 6%, and using MLR, AAPE is less than 9%. A comparison of the ANN and mechanistic 
model was done. The AAPE values for all datasets in this study were 3.2 % and 10.3 % for ANN model and 
mechanistic model respectively. 
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1. Introduction 
Underbalanced drilling (UBD) is increasingly used in the development of oil and gas fields because of 

minimizing the damage caused by invasion of drilling fluids into the formation, minimizing lost circulation, 
decreasing pressure differential sticking, increasing penetration rate, increasing production and extending bit 
life. UBD techniques are classified into gas, foam, gasified-liquid and liquid underbalanced drilling. The choice 
of drilling fluid type is determined by the formation pressure and formation properties. Foam is gaining 
increasing applications in the petroleum industry including drilling, cementing, fracturing and oil displacement. 
In drilling operations, foam can be used for both UBD and Managed Pressure Drilling (MPD). Foam fluids 
generally include 5-25% liquid phase and 75-95% gaseous phase. The liquid phase could be fresh water or 
brines. The gaseous phase is usually an inert gas. A surfactant is often used as a stabilizer and it comprises about 
5% of the fluid system. The fluid system can be weighted up using heavy brines or barites. It has higher cuttings 
transport ability compared to air drilling fluids. With the ever increasing gas prices, foam will be an excellent 
candidate for drilling unconventional gas wells, for example, coal-bed methane drilling. Foam is a compressible 
and homogeneous mixture in comparison with the conventional and aerated drilling fluids. This makes foam a 
unique fluid for drilling through formations with continuously changing pressure gradients [1-4]. Hole cleaning 
(cuttings transport) is one of the main factors influencing cost, time, and quality of directional, horizontal, 
extended reach, and multilateral oil/gas wells. Inadequate hole cleaning can result in costly drilling problems 
such as pipe sticking, premature bit wear, slow drilling, formation fracturing, and high torque and drag. Cuttings 
transport is mainly controlled by many variables, such as the well inclination angle, hole and drillpipe diameters, 
drillpipe rotation, drillpipe eccentricity, rate of penetration, cuttings characteristics (size, porosity of bed), flow 
rate, fluid velocity, flow regime, mud type, and complex non-Newtonian mud rheology. An outstanding review 
of the cuttings transport discussion was given by Nazari et al. [5]. Many researchers have been carried out on 
cuttings transport with conventional drilling fluids in horizontal and directional wells [6-8]. Foams can have 
extremely high viscosity, in all instances in which their viscosity is greater than that of both the liquid and the 
gas that they contain. At the same time, their densities are usually less than one-half that of water. They are 
stable at high temperatures and pressures. Hence, if foam is applied as a drilling fluid, high viscosity of the foam 
permits efficient cuttings transport. In addition, its low density allows underbalanced conditions to be 
established, and formation damage to be minimized. Furthermore, compression requirement is decreased. For 
wells are drilled with foams, efficient cuttings removal is of critical significance according to multiphase flow 
and foam drilling hydraulic. The majority of publications of cuttings transport with foam describe operators’ 
experiences, field practices, 1D numerical simulation of cutting transport and equipment used [2-4, 9-19]. 
Artificial neural network (ANN) is a simple and more reliable predictive tool that can be used to model and 
investigate various highly complex and nonlinear phenomena. The ANN method is an alternative statistical 
prediction method inspired by studies on the human nerve and brain system [20]. ANN has been applied in the 
multiphase flow fields and acceptable results were achieved compared with the conventional methods 
incorporating correlations and mechanistic models [21-28]. The aim of this study is to determine hole cleaning 
efficiency of foam fluid flow through a horizontal annuli using ANN. The ANN model was verified by 
experimental data obtained from the literature. The results show that adequate accuracy was obtained by the 
model to predict hole clean-up efficiency.  

2. Parameters affecting cuttings transport process 
It is not possible to consider all the parameters that govern the phenomenon of the cuttings transport from 

the bottom of hole to the ground surface. These factors include annular velocity, drilling fluid properties, hole 
geometry, pipe rotation, rate of penetration (ROP) and bottom hole conditions such as temperature and pressure. 
However, evaluating the critical factors on cuttings transport is an essential task. In addition, different forces 
including gravitational force, buoyancy force, drag force and lift force affect the cuttings transport [5, 7]. In this 
study, the effect of some important parameters on cuttings transport with foam drilling are analysed according to 
the literature review. Other parameters such as well geometry, cuttings properties and ROP were maintained 
constant in all tests.  

2.1. Foam velocity effect 
As expected, cuttings concentration decreased with an increase in the foam velocity. For aqueous foams 

(polymer concentration=0) having low qualities (70% and 80%), the improvement of hole cleaning is negligible 
or slight noticeable by increasing foam velocity. With high foam qualities ( = 90%), cuttings concentration 
decreases considerably by increasing foam velocity (Fig. 1). For polymer-based foam, the change in cuttings 
concentration versus flow velocity is more pronounced; when velocity is increased from 3 ft/s to 5 ft/s, cuttings 
concentration decreased from 18.8% to 3.1% [9, 10, 18, 19].  
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Fig. 1. Velocity effect on cuttings transport efficiency ( =90%, P=100psi, T =80°F) [9] 

2.2. Foam quality effect 
Foams are typically characterised by the quality (Γ), the ratio of the volume of gas and the total foam 

volume [3]: 
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where, Vg and Vl are gas and liquid volume respectively. 
Test results show that foam with higher quality is more effective in hole cleaning [9]. The reason may be 

clarified as follows (Fig. 2). The cuttings carrying capacity of a fluid depends on two parameters, i.e., fluid 
density and viscosity. A fluid with higher viscosity or a higher density normally enhances cuttings carrying 
capacity due to a lower cuttings slip velocity. With an increase in the foam quality, foam apparent viscosity 
increases, which is favourable for cuttings transport. On the other hand, foam density decreases with quality 
increasing, which detrimental for cutting transport. So, the improvement of cutting transport because by 
increasing foam viscosity, is compromised by decreasing the foam density. Therefore, hole cleaning can be 
improved using following three options: applying pipe rotation, increasing velocity or flow rate and increasing 
foam quality. Depending on other parameters, the last two options may or may not offer a great help in hole 
cleaning efficiency. Yet they extensively raise frictional pressure loss in most cases. By applying pipe rotation, 
however, both cuttings concentration and pressure loss can be reduced. Therefore, rotating the drillpipe during 
foam drilling, if possible, is one of the best options for hole cleaning [19]. 

 
Fig. 2. Cuttings concentration versus flow velocity for 70%, 80% and 90% quality foams [9] 

2.3. Downhole pressure effect  
Fig. 3 shows the cuttings concentration as a function of test pressure for 80% quality foams flowing at a velocity 
of 3 ft/s. It appears that, as pressure increases, there is a slightly decrease in the cuttings concentration in the 
annulus [9, 19].  
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Fig. 3. Cuttings concentration versus test pressure (V = 3 ft/s, 80 0F) [9] 

2.4. Temperature effect  
Fig. 4 shows the cuttings concentration versus foam flow velocity at three different temperatures of 80 °F, 

120 °F and 160°F for 90% quality foam in concentric horizontal annulus. Temperature slightly increased 
cuttings concentration.. The change in the temperature may not noticeably affect the cutting transport efficiency 
for practical foam drilling operation [3, 9, 10]. 

 
Fig. 4. Cuttings concentration versus flow velocity represented for different temperatures ( = 90%) [9] 

2.5. Combined effect of pressure and temperature 
Fig. 5 shows the cuttings concentration versus foam quality for foams tested at three different pressures 

(100, 250 and 400 psi) and temperatures (80 °F, 120 °F and 170°F) levels. Foam velocity is maintained at 3 ft/s. 
This figure shows that as both temperature and pressure increase (temperature from 80F to 170F, pressure 
from 100psi to 400 psi), cuttings concentrations slightly increase for 80% and 90% quality foams. But again, the 
change is still somewhat small. Based on the experimental results obtained at different combinations of pressure 
and temperature conditions, it can be concluded that at EPET conditions, there are slight changes in cuttings 
concentrations, but the changes are quite limited. Basically, foam keeps its cuttings transport property almost 
well under simulated downhole conditions. This is a very pleasant property for foam [3, 9, 10]. 

 
Fig. 5. Cuttings concentration versus foam quality given for a combined effect of temperature and pressure [9] 

2.6. Pipe Rotation effect  
Pipe rotation affects the cuttings bed erosion significantly. It has been illustrated that  rotation produces a 

velocity profile that makes bed erosion easier. Optimizing the use of rotation can also give an improvement of 
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drilling efficiency [29]. Pipe rotation not only reduces cuttings concentration in a horizontal annulus for foams 
with different qualities and at various foam velocities but also lead to a significant reduction in frictional 
pressure loss. This is due to a reduction in cutting concentration in the annulus [10,19]. Fig. 6 illustrates the 
effect of pipe rotation on cuttings transport in eccentric horizontal annulus using high quality (90%) foams.  

 
Fig. 6. The effect of pipe rotation on cuttings transport using high quality (90%) foams [19] 

2.7. Eccentricity effect  
Fig. 7 shows the effect of eccentricity (e=E/(Ro-Ri), where E is offset distance between the centers of the 

inner tube, Ri, and the outer tube, Ro), of annulus.) on cutting concentration for 80% foam quality. The particle 
volume fraction increases in narrow gap with eccentricity increasing. Thus, the axial pressure drop deceases 
with increased eccentricity. Eccentricity of annulus is 0.78. 

 
Fig. 7 The effect of pipe eccentricity on cuttings transport [9, 10] 

3. Artificial neural networks (ANNs)  
ANNs are generally defined as information-processing systems, which operate based on the human mind 

system. Neuron is the simplest unit of a neural network with a large number and connections and operates as a 
processing element. Fig. 8 illustrates a typical neuron structure. The mechanism of the ANNs is based on the 
following assumptions [20, 30]: a) Information processing occurs in neurons, b) Signals are passed between 
neurons over connection links, c) Each connection link has an associated weight, which, in a typical neural 
network, multiplies the signal being transmitted, d) Each neuron applies an activation function (Fig. 9), typically 
a nonlinear expression, to its net input in order to determine its output signal. 
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Fig. 8. A typical neuron [31]  Fig. 9. Three examples of activation functions [31]

The information processing occurs as follows; inputs (pi) coming from another neuron are multiplied by their 
individual weights (w1,i), and weighted input connections are joint inside the neuron and the bias term (bi) is 
incorporated to the summation at the neuron in order to increase or decrease the input (nj) that goes into the 
activation function. The various n (i) form an S-element net input vector n. Finally, the neuron layer outputs 
form a column vector (n). An activation function is then applied to the summation, and the output (a) of that 
neuron is now calculated and ready to be transferred to another neuron. This procedure is formulated as below:  
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Then, final output of a neural network can be calculated as follows: 
)( SS nfa               (4) 

While these neurons are combined to create a neural network, the system undergoes a training stage where 
input and output pairs are introduced to the network and the weights in between the neurons are modified so that 
the network outputs reach the desired outputs as close as possible. The learning is ceased as soon as the error 
between the desired and the real outputs are within an reasonable range; this is performed by summing up the 
error terms at the output and forming a performance function in terms of network inputs and weights and 
minimizing this performance function with regard to the network inputs. The performance function is usually 
derived from mean square error (MSE) of the outputs. Due to the nature of this algorithm, these types of neural 
networks are also called supervised neural networks. Once the training is finished, the weights in between the 
neurons are stored for each layer and the network is ready to conduct a testing process. Testing is carried out by 
introducing an input-output sample that is not part of the training pairs. The stored weights are used to estimate 
the output. The difference between the desired and real output describes whether the learning was satisfactory 
and successful. It may also show how similar the new input-output pair is to any of the trained patterns. A 
typical neural network has always one input layer and one output layer, but depending on the particular network 
type, a different number of hidden layers may be incorporated. However, some networks even lack any hidden 
layer. A single hidden layer is enough to approximate any function to a desired degree of accuracy [32].  

3.1. Back Propagation Neural Network (BPNN) 
The feed-forward neural networks with back propagation (BP) learning algorithm are very powerful in 

function optimization modelling. BPNNs are recognised for their prediction capabilities and ability to generalise 
well on a wide variety of problems. These models are a supervised type of networks, in other words, trained 
with both inputs and target outputs. During training stage the network tries to match the outputs with the desired 
target values. Learning begins with the assignment of random weights. The output is then calculated and the 
error is eventually estimated. This error is used to update the weights until the stopping criterion is reached. It is 
noted that a stopping criterion is usually the average error or epoch. Over fitting phenomenon is the main 
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disadvantage of the BPNN technique. This may happen when the error on the training set is driven to a very 
small value, but when new data is introduced to the network, the error is large. This problem occurs mostly in 
case of large networks with only a small number of available data sets. Early stopping and Automated Bayesian 
Regularization (ABR) methods can be applied to avoid over fitting problem [31]. In ABR technique, the 
available data is separated into two subsets. The first subset is the training set, which is used to calculate the 
gradient and updating the network weights and biases. The second one is the test set. This method works by 
modifying the performance function, which is generally selected to be the sum of squares of the network errors 
on the training set. The most common performance function that is used for training feed forward neural 
networks is the mean sum of squares of the network errors according to the following equation: 
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where, N represents the number of samples, iŷ
 
is the predicted value, iy  denotes the measured value and ei is 

the error. One may improve the generalization if the performance function is modified by adding a term that 
comprises the mean of the sum of squares of the network weights ( msw ) and biases which is expressed by: 

mswmsemse reg )1(              (6) 

where, regmse  is the modified error,   represents the performance ratio, and 
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Using this performance function enables the network to have slighter weights and biases. This will force the 
network response to be smoother and less likely to over fit [31]. 

3.2. Cuttings concentration prediction using BPNN 
In this study, 77 cutting transport experimental datasets at Tulsa University obtained from the literature [9, 

10] were used to create a BPNN model. Table 1 gives test matrix of experiments. 

Table 1. Test matrix of cuttings transport using aqueous foam [9, 10] 
Value Testing parameter 

5.76" by 3.5" Annular size  
0, 40, 80, 120 Pipe rotation (rpm)  

2, 3, 4, 5, 6 Foam velocity (ft/s)  
60, 70, 80, 90 Foam quality (%)  

0, 0.78 Eccentricity (-) 
80, 120, 160, 170 Temperature (F) 
100, 200, 250, 400 Pressure (psi)  

3 Cuttings size(mm) 
2610 Cuttings density (kg/m3) 
50  ROP(ft/hr) 

Input parameters of BPNN include foam velocity (V), foam quality ( ), eccentricity of annulus (e = E /(Ro 
- Ri), where E is offset distance between the centers of the inner tube, Ri, and the outer tube, Ro, of annulus), 
subsurface condition (pressure, P, and temperature, T), and pipe rotation (RPM). The output of network is 
cutting concentration (CC %). Table 2 outlines the correlation matrix between cuttings concentration (CC) and 
independent variables. According to this table, foam quality ( ), foam velocity (V) and pipe rotation (RPM) 
are more effective on cuttings transport phenomenon.  

Table 2. Correlation matrix between cuttings concentration and independent variables 

  P T V RPM   e CC 
P 1       
T 0.071 1      
V -0.12 0.059 1     

RPM -0.121 -0.145 -0.223 1    

 0.026 0.183 0.404 -0.115 1   
e -0.266 -0.245 -0.298 0.613 -0.144 1  

CC -0.046 0.14 -0.57 -0.256 -0.679 0.053 1 

Considering the requirements of the ANN computation algorithm, both input and output data were 
normalised to an interval by a simple transformation process. In this study, normalization of data was carried out 
within the range of [-1, 1] using Equation (8), 

12
minmax

min 




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pp
pn          (8) 

where, pn is the normalised parameter, p denotes the actual parameter, pmin represents a minimum of the actual 
parameters and pmax stands for a maximum of the actual parameters. About 70% of the total data sets (60 out of 
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77 of the data) were selected for training and the rest for testing purposes. Several architectures comprising 
varied numbers of neurons in hidden layer with ABR algorithm and mean square error (MSE) performance 
function were tried to predict cutting concentration using BPNN. Two criteria were employed in order to assess 
the effectiveness of each network and its ability to make accurate predictions; they are: average absolute percent 
relative error (AAPE) and the correlation coefficient (R).  
The AAPE concept gives an idea of absolute relative deviation of estimated from the measured data. It can be 
calculated from the following equation: 
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where, iy is the measured value, iŷ  denotes the predicted value, and N stands for the number of samples. The 

lowest the AAPE value, the more accurate the prediction is. 
The last measure, known as the efficiency criterion, R represents the percentage of the initial uncertainty 
explained by the model. It is given by: 
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The best fitting between predicted and measured values, which is unlikely to occur, would have AAPE=0 or 
R=1. The optimal network of this study is a feed forward multilayer perceptron. This network comprises one 
input layer with 6 inputs (P, T, V, RPM, e,  ) and one hidden layer with 10 neurons. Fletcher and Goss [33] 
suggested that the appropriate number of nodes in a hidden layer varies between ( n2 + m) and (2n + 1), 
where n is the number of input nodes and m represents the number of output nodes. Each neuron has a bias and 
is fully connected to all inputs and employs a log-sigmoid activation function. The output layer has one neuron 
(CC) with a linear activation function (purelin) without bias. Training function of this network is ABR 
algorithm (trainbr). In this study, (n=6) and (m=1) and thus the appropriate number of hidden layer neurons was 
chosen as 10 (6-10-1). Fig. 10 shows the BPNN architecture constructed in this work.  

  
Fig. 10. BPNN architecture (6-10-1) 

4. Cuttings concentration prediction using MLR 
Multiple linear regression (MLR) is an extension of the regression analysis that incorporates additional 

independent variables in the predictive equation. Here, the model to be fitted is: 

exBxBBy nn  ....221         
(11) 

where, y is the dependent variable, xis are the independent random variables and e is a random error (or 
residual) which is the amount of variation in y not accounted for by the linear relationship. The parameters Bis, 
stand for the regression coefficients, are unknown and are to be estimated. However, there is usually substantial 
variation of the observed points around the fitted regression line. The deviation of a particular point from the 
regression line (its predicted value) is called the residual value. The smaller the variability of the residual values 
around the regression line, the better is model prediction. In this study, regression analysis was performed using 
the train and test data employed in neural network data. The cuttings concentration considered as the dependent 
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variable and V,  , P, T, RPM and e were considered as the independent variables. A computer-based package 
called SPSS (Statistical Package for the Social Sciences) was used to carry out the regression analysis.  

5. Results and discussion 
Using the ANN approach described above, all necessary computations were implemented by supplying extra 

codes in MATLAB software. The matrix of inputs in training step is a n×N vector, where n is the number of 
network inputs and N is the number of samples used in training step. In this paper, six input variables (V,  , P, 
T, RPM, e) and 60 samples were used to train the network and rest of samples were used for testing the network. 
The correlation coefficient (R) and AAPE were used for comparison of the ANN model predictions with 
experimental data [9 and 10] and the results of mechanistic model [10]. Fig. 11 compares the predicted cuttings 
volumetric concentration (%) and the experimental values for the training data set. The correlation coefficient 
(R) to the linear fit (y=ax) is 0.993 with the AAPE value of 2.38%; describing almost a perfect fit. This indicates 
the fact that the training stage was done very well. For testing stage, those data sets which were not employed by 
the ANN model during training process were used. A comparison of the cutting concentrations predicted by the 
network and the measured values for the test data set is shown in Fig. 12. A correlation coefficient (R) of 0.914 
together with an AAPE of 5.93% describes a very satisfactory model performance. These results verified the 
success of neural networks which recognise the implicit relationships between input and output variables. 

Fig. 11. ANN prediction versus measured cutting concentration 
[9, 10] for the training data 

Fig. 12. ANN prediction versus measured cutting concentration 
[9, 10] for the test data 

Using MLR approach in SPSS software, the estimated regression relationship for cuttings concentration 
(CC) is given as below: 
CC(%)=74.21-0.009*P+0.048*T-3.105*V-0.079*RPM-49.248*      (13) 
The statistical results of the model are given in Table 3. Cuttings concentration was estimated according to the 
Equations 13.  

Table 3. Statistical characteristics of the multiple regression models 
Model Method Independent 

variables 
Coefficient Standard 

error 
Standard 
error of 
estimate 

t-value F-ratio Sig. 
level 

Determination 
coefficient 

(R2) 
 
  
 

Eq. 13 

  
  
 

Enter 

Constant 74.210 4.105  
 

2.98 

18.078  
 

45.98 

.000  
 

0.839 
P -.009 .004 -2.019 .049 
T  .048 .013 3.635 .001 
V -3.105 .494 -6.280 .000 

RPM -.079 .010 -7.665 .000 

 -49.248 5.225  -9.426 .000 

Figs 17 and 18 compare the MLR cuttings concentration (%) versus the experimental values for the training and 
test data set respectively. The correlation coefficient (R) and AAPE for train data are 0.916 and 6.5% and for 
test data, they are 0.84 and 7%.  
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Fig. 17. MLR prediction versus measured cutting concentration 
[9, 10] for the train data 

Fig. 18. MLR prediction versus measured cutting concentration 
[9, 10] for the test data 

A comparison of the ANN, MLR and mechanistic model [10] predictions with the measured values for the 
all data sets used in this study with a population of 77 is shown in Fig. 14. The correlation coefficient (R) is 
0.984, 0.909 and 0.8568 for ANN, MLR and mechanistic model respectively. The AAPE values are 3.2 %, 8.5% 
and 10.3 % for ANN, MLR and mechanistic model respectively.  

 
Fig. 16. Comparison of measured all datasets versus ANN, MLR and mechanistic model predictions  

Table 2 compares the AAPE associated with three methods for both Duan [10] and Chen [9] data. . It is well 
illustrated in Table 4 that the ANN method has high capability in prediction respect to statistical and 
mechanistic models.  

Table 4. Comparison of the AAPE associated with three methods 
AAPEMethod 

Chen data [9]Duan data [10] 

3.3%3.1%ANN model 

7%9.8%MLR model 

9.4%11.2%Mechanistic model 

6. Conclusions 
In this study, cutting concentration within the foam drilling in horizontal annular geometries was estimated 
using ANN and MLR models. The ANN presented here has three layers namely input layer, hidden layer and 
output layer. Input layer has six neurons including, foam velocity, foam quality, eccentricity of annulus, 
subsurface condition (pressure and temperature), and pipe rotation. Hidden layer has ten neurons with a log-
sigmoid activation function in all neurons. Output layer has one neuron (cutting concentration, CC %) with a 
purelin activation function. The correlation coefficient between measured and prediction values in training and 
testing data is 0.994 and 0.914 respectively. The AAPE of training and testing data in ANN model are 2.38% 
and 5.93% respectively. A comparison of the ANN, MLR and mechanistic model was done. The results 
obtained from this study reveal that ANN could accurately predict the hole cleaning efficiency using foam 
drilling respect to MLR and mechanistic models.  
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