

The Extended Abstracts of The 44th Annual Iranian Mathematics Conference 27-30 August 2013, Ferdowsi University of Mashhad, Iran.

APPROXIMATE ENDPOINT GENERALIZATION FOR β -SHRINKING, β -CONVERGENT MULTIFUNCTIONS

HADI ALIKHANI¹*AND SHAHRAM REZAPOUR²

ABSTRACT. In this lecture we give some generalization of approximate endpoints by using β -shrinking, β -convergent multifunctions. Also we state some applications of these results for integral equations.

1. Introduction

Let (X, d) be a metric space. Denote by CB(X) the collection of all nonempty bounded and closed subsets of X. Let H be the Hausdorff metric with respect to d, that is,

$$H(A,B) = \max\{sup_{x \in A}d(x,B), sup_{y \in B}d(y,A)\},\$$

for all $A, B \in CB(X)$ where $d(x, B) = \inf_{y \in B} d(x, y)$.

Let $T: X \to 2^X$ be a multifunction. An element $x \in X$ is said to be a fixed point of T, if $x \in Tx$. An element $x \in X$ is said to be an endpoint (or stationary point) of T, if $Tx = \{x\}$.

A multifunction $T: X \to 2^X$ has the approximate endpoint property, whenever $\inf_{x \in X} \sup_{y \in Tx} d(x, y) = 0$. In 2010 Amini Harandi proved the following theorem([2]).

Theorem 1.1. Let (X,d) be a complete metric space and $T: X \to CB(X)$ a multifunction satisfying $H(Tx,Ty) \leq \psi(d(x,y))$. for each

²⁰¹⁰ Mathematics Subject Classification. Primary 47H10; Secondary 37C25, 54H25, 55M20.

Key words and phrases. β -generalized weak contractive multifunction, approximate endpoint, endpoint, fixed point.

^{*} Speaker.

H. ALIKHANI AND SH. REZAPOUR

x and y in X where $\psi : [0, \infty) \to [0, \infty)$ is upper semicontinuous, $\psi(t) < t$ for each t > 0 and $\liminf_{t \to \infty} (t - \psi(t)) > 0$. Then T has a unique endpoint if and only if T has the approximate endpoint property.

Immediately, Moradi and Khojasteh[3] defined the concept of generalized weak contractive multifunction as following:

The multifunction T is said to be generalized weak contractive, if there exists an upper semicontinuous mapping $\psi:[0,\infty)\to[0,\infty)$ with $\psi(t)< t$ for all t>0, such that $H(Tx,Ty)\leq \psi(N(x,y))$ for all $x,y\in X$ where

$$N(x,y) = \max\{d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2}\}.$$

They proved the following theorem which is a generalization of Theorem 1.1.

Theorem 1.2. [3] Let (X,d) be a complete metric space and $T: X \to CB(X)$ a generalized weak contractive multifunction where $\psi: [0,\infty) \to [0,\infty)$ is upper semicontinuous mapping with $\psi(t) < t$ for all t > 0 and $\liminf_{t\to\infty} (t-\psi(t)) > 0$. Then T has a unique endpoint if and only if T has the approximate endpoint property.

Now, we define some new concepts and give some generalizations for endpoint of multifunctions.

We say that the function $\psi:[0,+\infty)\to[0,+\infty)$ is upper semicontinuous whenever $\limsup_{\lambda\to\lambda_0}\psi(\lambda)\leq\psi(\lambda_0)$.

Let (X,d) be a metric space. The multifunction T is said to be β -generalized weak contractive if there exist the functions $\beta: 2^X \times 2^X \to [0,\infty)$ and $\psi: [0,+\infty) \to [0,+\infty)$ such that $\beta(Tx,Ty)H(Tx,Ty) \le \psi(N(x,y))$ for all $x,y \in X$ where ψ is an upper semicontinuous function such that $\psi(t) < t$ for all t > 0.

Let (X,d) be a metric space, $T:X\to 2^X$ a multifunction and $\beta:2^X\times 2^X\to [0,\infty)$ a mapping. We say that T is β -shrinking whenever if $\{x_n\}$ be a sequence in X such that $\lim_{n\to\infty} diam(Tx_n)=0$, then there exists $N\in\mathbb{N}$ such that $\beta(Tx_n,Tx_m)\geq 1$ for all $m>n\geq N$. A multifunction T is said to be β -convergent whenever for each sequence $\{x_n\}$ with $x_n\to x$, then there exists $N\in\mathbb{N}$ such that $\beta(Tx_n,Tx)\geq 1$ for all $n\geq N$.

2. Main results

Now, we are ready to state and prove our main results.

APPROXIMATE ENDPOINT GENERALIZATION ...

Theorem 2.1. Let (X,d) be a complete metric space and $T: X \to CB(X)$ a β -shrinking and β -convergent multifunction satisfying

$$\beta(Tx, Ty)H(Tx, Ty) \le \psi(d(x, y))$$

for all x, y in X where ψ is an upper semicontinuous function with $\psi(t) < t$ for all t > 0. Then T has an endpoint if and only if T has the approximate endpoint property.

Now, we define the condition(G) as following: (G) If $A, B \subset X$ such that $A \nsubseteq B$ or $B \nsubseteq A$, then $\beta(A, B) \ge 1$.

Corollary 2.2. Let (X,d) be a complete metric space and $T: X \to CB(X)$ a β -shrinking and β -convergent multifunction satisfying condition (G) and

$$\beta(Tx, Ty)H(Tx, Ty) \le kd(x, y)$$

for all x, y in X where $k \in [0, 1)$. If T has the approximate endpoint property, then there exists $x_0 \in X$ such that $Fix(T) = End(T) = \{x_0\}$.

The following theorem generalizes theorem 1.2.

Theorem 2.3. Let (X,d) be a complete metric space and $T: X \to CB(X)$ a β -shrinking, β -convergent and β -generalized weak contractive multifunction Then T has an endpoint if and only if T has the approximate endpoint property.

Application. Now, we give an application of the last results. We use these results to find solution for integral equations. We used a method that is similar to the results of [4].

Consider the following integral equation:

$$u(t) = \int_0^L K(t, s, u(s))ds + g(t)$$
 (2.1)

for all $t \in I$, where I = [0, L] and L > 0. Also by C(I), denote the set of all continuous functions $u: I \to \mathbb{R}$. One can easily see that (C(I), d) is a complete metric space with the metric defined by:

$$d(u,v) = \sup_{t \in I} \mid u(t) - v(t) \mid.$$

As we know, we can consider a selfmap $T: X \to X$ with Tx = y, as the multifunction $T: X \to 2^X$ defined by $Tx = \{y\}$. In this case we have H(Tx, Ty) = d(Tx, Ty) for all $x, y \in X$.

Now we are ready to state the following theorem.

H. ALIKHANI AND SH. REZAPOUR

Theorem 2.4. Suppose that the following statements hold:

- (i) The functions $K: I \times I \times \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are continuous.
- (ii) There exists a continuous function $G: I \times I \to \mathbb{R}$ such that

$$|K(t, s, x) - K(t, s, y)| \le G(t, s) \frac{|x - y|}{2}$$

for all $x, y \in \mathbb{R}$ and $t, s \in I$.

- (iii) $\sup_{t \in I} \int_0^L G^2(t,s) ds \leq \frac{1}{L}$. (iv) $\inf_{u \in C(I)} \sup_{t \in I} |u(t) \int_0^L K(t,s,u(s)) ds g(t)| = 0$. Then the integral equation 2.1 has a solution.

Theorem 2.5. Suppose that the following statements hold:

- (i) The functions $K: I \times I \times \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are continuous.
- (ii) There exists a function $\beta: 2^{C(I)} \times 2^{C(I)} \to \mathbb{R}$ and $\alpha: 2^{\mathbb{R}} \times 2^{\mathbb{R}} \to \mathbb{R}$ such that for all $u, v \in C(I)$ we have

$$\beta(u, v) = \sup_{t \in I} \alpha(u(t), v(t)).$$

Also $\beta(A, B) > 1$ whenever A or B is a singleton subsets of C(I).

(iii) There exists a continuous function $G: I \times I \to \mathbb{R}$ such that

$$|K(t, s, x) - K(t, s, y)| \le G(t, s) \frac{J(x, y)}{2}$$

for all $x, y \in \mathbb{R}$ and $t, s \in I$.

- (iv) $\sup_{t \in I} \alpha^2 (\int_0^L K(t, s, u(s)) ds + g(t), \int_0^L K(t, s, v(s)) ds + g(t)).$ $\int_0^L G^2(t,s)ds \leq \frac{1}{L}$.
- (v) $\inf_{u \in C(I)} \sup_{t \in I} |u(t) \int_0^L K(t, s, u(s)) ds g(t)| = 0.$ Then the integral equation 2.1 has a solution.

References

- 1. H. Alikhani, Sh. Rezapour, N. Shahzad Fixed points of a new type contractive mappings and multifunctions, To appear in FILOMAT.
- 2. A. Amini-Harandi, Endpoints of set-valued contractions in metric spaces, Nonlinear Analysis 72 (2010) 132-134.
- 3. S. Moradi, F. Khojasteh, Endpoints of multi-valued generalized weak contraction mappings, Nonlinear Analysis 74 (2011) 2170–2174.
- 4. H. K. Nashine, B. Samet, Fixed point results for mappings satisfying (ψ, ϕ) weakly contractive condition in partially ordered metric spaces, Nonlinear Analvsis 74 (2011) 2201-2209.