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Abstract

Lifetime performance index (CL) is a flexible and effective tool for evaluating prod-
uct quality and conforming rate. Ranked set sampling (RSS) scheme is applied for
Baysian estimator of CL based on square error loss. We assume that lifetimes of prod-
ucts follow a one-parameter exponential distribution. The simulation result for this
scheme is compared with simple random sample (SRS) scheme based on bias, risk,
pitman nearness, relative efficiency.
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1 Introduction

In lifetime testing experiments, the experimenter because of time limitation or other re-
strictions such as lack of funds, lack of material resources, mechanical or experimental
difficulties, etc on data collection, may not always be in a position to observe the lifetimes
of all the products on test. In this paper, we propose sampling scheme known as ranked-set
sampling (RSS), introduced by McIntyre [3], instead of simple random sample (SRS) for
estimating and testing a lifetime performance index CL, since this method requires fewer
observations to provide the same information[1] . CL index, proposed by Montgomery [4],
has many applications in health care and public health monitoring and surveillance and
used to measure the larger-the-better type quality characteristics. This index defined as:
CL = µ−L

σ , where µ is the process mean, σ is the process standard deviation and L is the
lower specification limit. The ratio of conforming products is known as the conforming
rate and can be defined as p = P (X ≥ L) = eCL−1,−∞ < CL < 1. Obviously, a strictly
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increasing relationship exists between the conforming rate p and the lifetime performance
index CL. CL and θ can be derived as CL = 1+ ln p and θ = − L

ln p respectively. The RSS
scheme can be used for hospital monitoring with respect to patient infection rates, patient
falls or accidents, emergency waiting room times, and so on. The data from patients
can be obtained via RSS schemes using expert’s knowledge or using auxiliary variables
[2]. In this paper we assume that the lifetime data follow a one-parameter exponential
distribution, ε(θ), with pdf f(x) = 1

θe
−x

θ . In this case, the capability index CL reduces to
CL = 1− L

θ . To obtain a ranked set sampling, suppose X1, X2, ..., Xn be a random sample
of size n with pdf f(x) and we have n set of such sample. Ranked set sampling is sourced
by the sample selection which is based on two stages, involves an initial ranking samples
of size n as follows:

Table 1: Ranking the samples

1 X1(1) X1(2) . . . X1(n−1) X1(n)
2 X2(1) X2(2) . . . X2(n−1) X2(n)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
n Xn(1) Xn(2) . . . Xn(n−1) Xn(n)

Here, Xi(j),(i, j = 1 : n) denotes the jth order statistic of the ith random sample.
RSS sample is formed by selecting the diagonal elements in Table 1. Element of new
sample RSS are independent but not identically distributed. In certain situations, the
whole procedure to generate an RSS of size n can be repeated m times. Success of RSS
depends very much on our ability to rank the units without any error.

2 Baysian estimatin for CL based on RSS

In this section, based on two different prior, IG(a, b) with known parameters a, b and
Jeffrey’s prior, we obtain Bayes estimators for CL based on RSS samples and study per-
formance of these estimators.

2.1 Inverse Gamma prior

Suppose θ ∼ IG(a, b), which probability density function is defined as π(θ) = ba

Γ(a)(
1
θ )
a+1e−

b
θ .

By Bayes’ theorem, the posterior distribution of θ, π(θ|Xsrs), is IG(n+a, b+
∑
xi). There-

fore the Bayes estimators for θ under square error loss is equal to E(θ|Xsrs) =
b+nX̄
n+a−1 , and

Bayes estimator for CL will be obtained ĈsrsLbayes−IG = 1−LE(1θ |Xsrs) = 1−L( n+a
b+nX̄

). Let
Xrss = {X(1,1), X(2,2), . . . , X(m,m)} is one-cycle RSS sample from ε(θ). The joint proba-
blity density function of the RSS, due to the independence of element Xrss, is given by
Sadek et al. [5] such as

gθ(Xrss) =

0∑
j1=0

1∑
j2=0

. . .

m−1∑
jn=0

m∏
i=1

(
1

θ
)me−

1
θ

∑m
i=1(n+k−i+1)x(i, i). (1)

So the posterior density can be written as
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π(θ|Xrss) =

0∑
j1=0

1∑
j2=0

. . .

m−1∑
jn=0

m∏
i=1

Cji(i)(
1

θ
)m+a+1e−

1
θ
(b+

∑m
i=1(n+ji−i+1)x(i,i))

0∑
j1=0

1∑
j2=0

. . .

m−1∑
jm=0

m∏
i=1

Cjk(i)(b+

m∑
i=1

(m+ ji − i+ 1)(x(i,i))
−(m+a)Γ(m+ a)

Then the Bayes estimator of CL is ĈrssLbayesIG
= 1−LE(1θ |Xrss) = 1−L

∫∞
0

1
θπ(θ|Xrss)dθ

2.2 Jeffry’s prior

If θ has the Jeffrey prior, π(θ) ∝ 1
θ , then 1

θ |Xsrs ∼ G(n, 1∑
Xi

). Therefore, the Bayes

estimator of CL is E(CL|Xsrs) = 1− L n∑
Xi

= 1− L
X̄srs

.
In the case of RSS scheme

π(θ|Xrss) =

0∑
j1=0

1∑
j2=0

. . .

m−1∑
jn=0

m∏
i=1

Cji(i)(
1

θ
)m+1e−

1
θ
(
∑m

i=1(m+ji−i+1)x(i,i))

0∑
j1=0

1∑
j2=0

. . .

m−1∑
jn=0

m∏
i=1

Cjk(i)(

m∑
i=1

(m+ ji − i+ 1)(x(i,i))
−(m)Γ(m)

,

therefore ĈrssLbayesJ
= 1− LE(1θ |Xrss) = 1−

∫∞
0

1
θπ(θ|Xrss)dθ

2.3 Simulation study

For studying performance of discussed estimators, we carry out Monte-Carlo simulations
as follows:

1. Determine lower specification limit L, hyper parameter (a, b), sample size n. Gen-
erate θ0 from distribution IG(a, b) and calculate CL. 10000 times repeat steps 2,
3.

2. Generate SRS and RSS samples of size n from ε(θ0) and derived ĈsrsLbayesIG
, ĈsrsLbayesJ

,

ĈrssLbayesIG
, ĈrssLbayesJ

.

3. For each samples and estimators in the step (2), calculate, di = (ĈLi − CL), i =
1, ..., 10000. In each times, for calculating the Pitman nearness criteria between two
estimators, we investigate if |ĈL1 − CL| < |ĈL2 − CL|.

4. The risk values of ĈLi is the mean of di2. Relative Efficiency between ĈL1 and ĈL2 is

RE(ĈL1, ĈL2) =
MSE(ĈL1)

MSE(ĈL2)
. The bias of ĈL is 1

10000

(∑10000
i=1 ĈLi

)
−CL. The pitman

nearness between ĈL1 and ĈL2 is 1
10000#|ĈL1 − CL| < |ĈL2 − CL|.

Example 1. We select values of hyper parameters, (a, b), in prior distribution, such that
the mean of prior distribution, IG(a, b), is fixed at 0.5 and for it’s variance we consider
three state: small (0.0357), moderate (0.0833) and large (0.25). With this strategy select
(a, b) = (9, 4), (5, 2), (3, 1). Let L = 1.04 and n = 4, 5, 6. Table 2 shows the values of Bias,
Risk, Relative Efficiency (RE) and Pitman Nearness criterion (PN).
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Table 2: Observed values of Bias, Risk, RE, PN
IGestimator jeffrys estimator pitman-nearness Relative efficiency

3 1 Bias 0.0347 0.0187 -1.0689 -0.3888 PN 0.4103 0.3779 0.6346 0.5873
Risk 1.6624 1.0309 15.718 2.429 RE 1.6126 6.3284 0.1081 0.4244

4 5 2 Bias -0.0145 -0.0099 -0.8825 -0.3292 PN 0.4115 0.3727 0.6676 0.6083
Risk 0.8147 0.5279 8.512 1.4876 RE 1.5434 5.7221 0.0957 0.3549

9 4 Bias 0.0085 0.0012 -0.7505 -0.2963 PN 0.4306 0.3876 0.7057 0.6446
Risk 0.437 0.3231 5.525 1.1639 RE 1.3525 4.747 0.0791 0.2776

3 1 Bias 0.0157 0.0013 -0.7643 -0.2641 PN 0.3906 0.359 0.6144 0.5795
Risk 1.4285 0.7502 7.3862 1.4537 RE 1.9042 0.1016 5.0810 0.7634

5 5 2 Bias -0.0088 -0.0001 -0.6944 -0.2202 PN 0.3998 0.3517 0.6564 0.602
Risk 0.7473 0.411 4.8278 0.9213 RE 1.8182 5.2402 0.1548 0.4461

9 4 Bias 0.0055 0.0019 -0.5689 -0.1889 PN 0.4113 0.3575 0.691 0.6207
Risk 0.4117 0.2602 3.3125 0.6376 RE 1.5822 5.1953 0.1243 0.4081

3 1 Bias -0.0115 0.0046 -0.69 -0.1802 PN 0.3624 0.3349 0.6117 0.5558
Risk 1.3246 0.5905 6.2285 0.93 RE 2.2431 6.6974 0.2127 0.6350

6 5 2 Bias 0.0047 0.0041 -0.5264 -0.1544 PN 0.3823 0.3356 0.6404 0.5796
Risk 0.6953 0.3356 3.1049 0.5839 RE 2.0718 5.3175 0.2239 0.5748

9 4 Bias 0.0007 0 -0.4829 -0.1407 PN 0.3898 0.331 0.6772 0.6049
Risk 0.3849 0.2114 2.489 0.4472 RE 1.8211 5.5656 0.1547 0.4727

Table 2 shows that absolute values of bias and also risk for ĈrssLbayes−IG and ĈrssLbayes−J
are smaller than similar estimators in SRS scheme.

Moreover the RE and PN probability criteria indicates the efficiency of RSS estimators
with respect to SRS estimators. Because of reducing the cost of data collection and better
performance estimators in simulation for RSS scheme, we suggest that ĈrssLbayes−IG and

ĈrssLbayes−J estimators as long as there are no ranking errors caused by a large set of size
m.
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